
98-023A Lecture 6

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 6

• A bit more about data types : ADTs and ref ADTs

• Dis VM architecture and internal data types

Lecture Outline

398-023A Lecture 6

Course Outline : Syllabus
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS

• Week 7: C applications as resource servers: Built-in modules and device drivers

• Week 7: Case study I — building a distributed multi-processor simulator

• Week 8: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 9: Programing with threads, CSP

• Week 10: Debugging concurrent programs; Promela and SPIN

• Week 11: Factotum, Secstore and Inferno’s security architecture

• Week 12: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

498-023A Lecture 6

Inferno System Structure

Built-in Modules

“#M”

598-023A Lecture 6

ADTs

• ADTs — Abstract Data Types or Aggregate Data types
• Collection of functions and data

Machine : adt
{

vdd : real;
freq : real;
ID : string
fmt : fn(mach : Machine); # Note: takes a value of an ADT

}

• They are essentially like tuples, except that they can contain functions, and
datums have names

• Can cast from tuples to ADTs
m := Machine (3.3, 60.0, “none”);

• ADTs are a value type
• In above example of Machine ADT, any changes to the received ADT instance

made by the fmt ADT function member will won’t be seen elsewhere. Why ?
(hint, what is the function’s return type ?)

698-023A Lecture 6

Reminder: “.”, “->” and “<-”

• The “->” separator is used to access module members
sys = load Sys Sys->PATH;
sys->print(”yikes!”);

• The “<-” operator is used to send or receive to a
channel
mychan : chan of int;
mychan <- = 5;

• The “.” separator is used to access an ADT member
function or datum
m.fmt(m);

798-023A Lecture 6

ADT function definitions
• After defining ADT type, its function implementations

must also be provided, if it contains functions
Machine : adt
{

vdd : real;
freq : real;
ID : string
fmt : fn(mach : Machine); # Note: takes a value of an ADT

}
Machine.fmt(mach : Machine)
{

sys->print(”%f\n”, mach.vdd);
sys->print(”%f\n”, mach.freq);
sys->print(”%s\n”, mach.ID);
mach.vdd = -99.9;

return;
}
...
m := Machine (3.3, 60.0, “none”);
m.fmt(m);
m.fmt(m);

What is printed ?

898-023A Lecture 6

Reference ADTs

• These are a variant of ADTs that are passed by
reference rather than by value
• Syntax example

 m : ref Machine;

• Creates a reference to a copy of an ADT instance
m0 := Machine (3.3, 60.0, “none”);

m0.fmt(m0);
mp = ref m0;
mp.vdd = 1.8;
m0.fmt(m0);

what is printed out ?

998-023A Lecture 6

Reference ADTs

• These are a variant of ADTs that are passed by reference
rather than by value
• Syntax example

 m : ref Machine;

• Creates a reference to a copy of an ADT instance, not a
reference to the instance named in ref ...
mp = m0 = ref Machine (3.3, 60.0, “none”);

m0.fmt(m0);
mp.vdd = 1.8;
m0.fmt(m0);

In this case, both mp and m0 are references to the same copy
(They’re references to copies of the ADT instance created from tuple
(3.3,60.0,“none”)

1098-023A Lecture 6

Reference ADTs and self

• In examples seen thus far, cumbersome method for
having an ADT instance work on its own data:
m0.fmt(m0);

• Functions defined in ref ADTs (and those only!) can
specify their first argument is a reference to their own
instance
Machine.fmt(mach : self ref Machine)
{

sys->print(”%f\n”, mach.vdd);
sys->print(”%f\n”, mach.freq);
sys->print(”%s\n”, mach.ID);
return;

}
...
m := Machine (3.3, 60.0, “none”);
m.fmt(); # Note: no args at call site, but function defn has

1198-023A Lecture 6

More

• ADTs and import
• Imagine:

include “mach.m”; # defines the Machine ADT shown earlier

Need to load code that implements ADT functions!
machmod = load Machmod Machmod->PATH;
m : Machine;

Will not work!
m.fmt();

• Pick ADTs
• ADTs with union substructures
• Also permit limited form of “pattern matching on type” (sort of)

• Read the book if you’re interested

1298-023A Lecture 6

The Dis Virtual Machine

• The execution layer in Inferno

• Limbo applications are compiled to an binaries
(bytecode), that the virtual machine executes

• Abstracts away the machine architecture, so compiled
Limbo programs are not tied to the host machine
architecture (e.g., x86, MIPS, SPARC etc.)

• The virtual machine is part of the kernel / emulator, and
is implemented in C

1398-023A Lecture 6

Dis VM architecture

• Architecture versus Microarchitecture
• Architecture represents interface seen by programs, i.e., Instruction Set

Architecture (ISA)

• Microarchitecture represents how things are implemented inside, e.g., the Intel
Pentium versus the Intel 386 : same architecture (ISA) but different
microarchitectures

• Like a real machine, it has an architecture (but not
microarchitecture)

• A memory-to-memory machine (think of it as having as many registers as there
are words in memory)

• 3 address instructions: op src1 src2 dest

• Operands have types: word, big, byte, real(Do these look familiar ?)

1498-023A Lecture 6

Dis VM types

• word: 32-bit, signed

• byte: 8-bit unsigned

• big: 64 bit, signed

• real: 64-bit IEEE 764 float

• short word: 16-bit, signed

• short float: 32-bit IEEE 764 float

• Instructions operate on data items of these types:
• E.g., addb, addw, addf, addl

1598-023A Lecture 6

Recall: Compiled module
(”.dis”) contents

• HelloWorld module only contains code to load Sys
module then do a module function call

1698-023A Lecture 6

Dis

• Handles execution of application code

• Garbage collection

• Channel Communication

• Module signing and verification

• Module load-time type checking of loaded code versus
signatures (which are MD5 hashes)

1798-023A Lecture 6

Demo : Looking at Dis
VM Spec

1898-023A Lecture 6

Next Lecture

• Next week : Inferno kernel and emulator source
structure, kernel and emulator implementation

Fin.

