
Invited Lecture, UC Irvine, October 9th 2003

Phillip Stanley-Marbell
Dept. of ECE, Carnegie Mellon

http://www.ece.cmu.edu/~pstanley

Pervasive Computing with
Inferno and Limbo

2Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• What I do
• Systems, programming languages, and analysis techniques for regular substrates

with 1000’s of failure-prone, energy-constrained devices per m2

• This is work done under the direction of my research advisor, Diana Marculescu
• Energy-Aware Computing Research Group http://www.ece.cmu.edu/~enyac

• This talk is about not about that (unfortunately...)

Introduction

Conductors for communication
and power distribution

processing elements
(e.g. microcontrollers,

programmable logic, sensors)

Devices and communications/
power conductors may fail

[Image courtesy Xerox PARC Large-
Area Electronics / Large-Area MEMS]

3Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Inferno Overview

• Abstraction and resources as files in Inferno

• The Limbo programming language

• Pervasive computing with Inferno and Limbo

• Summary

Talk Outline

4Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Inferno
• An operating system for networked devices

• Limbo
• A programming language for developing applications for Inferno

• There is (was) also support for running Java programs

• Dis
• Inferno abstracts away the hardware with a virtual machine, the Dis VM

• The VM and programming language cooperate to provide safety

Overview

5Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Inferno runs directly over bare hardware (PowerPC,
Intel x86, SPARC, MIPS, ARM, more...)

• Also available as an emulator which runs over many
modern operating systems (Windows, Linux, *BSD,
Solaris, IRIX, MacOS X)

• Emulator provides interface identical to native OS, to
both users and applications
• Filesystem and other system services, applications, etc.

• The emulator virtualizes the entire OS, not just hardware

Inferno

6Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Native

Hosted

Native and Hosted
Environments

7Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Native Inferno Screenshot

8Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Inferno Emulator on OpenBSD

9Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Text/SGML editors

• Web browser, WML browser, Mail Client

• Graphical debugger

• Games

• Grid computing tools

• Clones of Unix tools (sed, banner, etc.)

• Other (not part of the distribution)
• Audio editor / sequencer / synthesis
• Image manipulation tools

Available Software

10Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Inferno Overview

• Abstraction and resources as files in Inferno

• The Limbo programming language

• Pervasive computing with Inferno and Limbo

• Summary

Talk Outline

11Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

12Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Resource abstraction is a good thing
• Operating systems abstract away CPU, disk, network as system calls

• System call abstraction is unfortunately not easily scalable across systems

• Files are one abstraction
• Abstraction for bytes on disk (or elsewhere)

• Nothing inherently tying the concept of files to bytes on disk

• Except of course, the operating system / file server’s implementation

Resource abstraction

13Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Can think of files as names with special properties
• Size

• Access permissions

• State (creation/modification/access time)

• These properties are largely a historical vestige — we could imagine files with
more sophisticated ‘types’

• Files are just an abstraction
• There’s nothing inherently tying files (names) to bytes on disk

• Association with disk files just happens to be most common use

Files = Names

14Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Since files are so easy to deal with, can we represent all
resources as names (files) in a name space ?
• Process control ?
• Network ?
• Graphics ?

• This interface/abstraction is not inherently more
expensive than, say, a system call interface

• If we had a simple protocol for accessing files (names)
over network, we could build interesting distributed/
pervasive applications...

Resources as files

15Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Builds on the ideas developed in the Plan 9 Operating
System
• Most system resources are represented as names in a hierarchical name space

• Single, simple protocol (Styx) for accessing these names, whether local or over
network

• These names provide abstraction for resources (such as those available in other
systems via system calls)
• Graphics
• Networking
• Process control

Inferno : Resources as files

16Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Networking
• Network protocol stack represented

by a hierarchy of names

• Graphics
• Access to drawing and image

compositing primitives through a
hierarchy of names

Resources as files (names)
; du -a /net
0 /net/tcp/0/ctl
0 /net/tcp/0/data
0 /net/tcp/0/listen
0 /net/tcp/0/local
0 /net/tcp/0/remote
0 /net/tcp/0/status
0 /net/tcp/0
0 /net/tcp/clone
0 /net/tcp/
0 /net/arp
0 /net/iproute
...

; cd /dev/draw
; lc
new
; tail -f new &
1 0 3 0 0 640 480
; lc
1/ new
; cd 1
; lc
ctl data refresh

17Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Connect to a remote machine and attach its name
space to the local one

• Union remote machine’s /prog into local /prog

• ps will now list processes running on both machines, because it works entirely
through the /prog name space

• Can now simultaneously debug/control processes running on both machines

Example /prog : process control

; mount net!www.gemusehaken.org /n/remote

; bind -a /n/remote/prog /prog

; ps
 1 1 pip release 74K Sh[$Sys]
 7 7 pip release 9K Server[$Sys]
 8 1 pip alt 9K Cs
 9 9 pip release 13K Virgild[$Sys]
 10 7 pip release 9K Server[$Sys]
 11 7 pip release 9K Server[$Sys]
 15 1 pip ready 73K Ps[$Sys]
 1 1 abby release 74K Sh[$Sys]
 8 1 abby release 73K SimpleHTTPD[$Sys]

18Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Files used for both resource access and control

• Contrast this to Unix /dev/

• Do entries in /dev/ have the same semantics as ordinary files ?

• Why can’t you access /dev/ over, say, NFS ?

• What about ioctl() for controlling devices ? Why is device access via
filesystem but device control via system call ?!

Access and Control via
Name Space

19Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• What happens when names are accessed ?
• Operations on a single name: open, read, write

• Traversing hierarchies of names

• Styx Protocol
• A simple protocol used as the underlying method for accessing names

• Seen as subroutine calls when accessing local resources

• Programmers usually do not deal with Styx directly

Accessing Names

20Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Mount device delivers file operations to appropriate local device
driver via subroutine calls

• If file being accessed is from an attached namespace, deliver styx
messages to remote machine’s mount driver

Accessing Name Space Entries:
The Mount Device

Inferno Kernel Internal
Chan structure (channel)

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Eventually end up as in-

kernel subroutine calls to
appropriate device driver

Is name part of a remotely
attached name space ?

Send Styx messages (over
“network”)

21Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Mount driver also converts Styx messages coming in over the
network into calls to local device drivers

• Any entity that can speak Styx protocol can take advantage of
system resources and hardware
• This is a good thing for building distributed systems

Converting Styx messages to
local subroutine calls

Inferno Kernel Internal
Chan structure (channel)

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Subroutine calls

Received Styx
messages

22Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• 14 message types
• Initiate connection (Attach)
• Traversing hierarchy (Clone, Walk)
• Access, creation, read, write, close, delete (Open, Create, Read, Write, Close, Remove)
• Retrieve/set properties (Stat, Wstat)
• Error (Error)
• End connection (Flush)
• No-op (Nop)

• Easy to implement on, say, an 8-bit microcontroller

Styx in a Nutshell

Styx

Hardware R
S-

23
2

Styx Messages

This device can now access network protocol
stack, process control, display device etc. of the

connected workstation Real world example: Styx on Lego Rcx Brick
(Hitachi H8, 32K RAM, 16K ROM)

23Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Interloper is a simple program that lets you observe Styx
messages/local procedure calls generated by name space
operations

Example : Snooping on Styx

; interloper
Message type [Tattach] length [61] from MOUNT --> EXPORT
Message type [Rattach] length [13] from EXPORT --> MOUNT
; cd /n/remote
; pwd
Message type [Tclone] length [7] from MOUNT --> EXPORT
Message type [Rclone] length [5] from EXPORT --> MOUNT
Message type [Tstat] length [5] from MOUNT --> EXPORT
Message type [Rstat] length [121] from EXPORT --> MOUNT
Message type [Tclunk] length [5] from MOUNT --> EXPORT
Message type [Rclunk] length [5] from EXPORT --> MOUNT
/n/#/
;

24Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Inferno Overview

• Abstraction and resources as files in Inferno

• The Limbo programming language

• Pervasive computing with Inferno and Limbo

• Summary

Talk Outline

25Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Limbo is a concurrent programming language

• Language level support for thread creation, inter-thread communication over
typed channels

• Language-level communication channels

• Based on ideas from Hoare’s Communicating Sequential Processes (CSP)

• Features
• Safe : compiler and VM cooperate to ensure this
• Garbage collected
• Not O-O, but rather, employs a powerful module system
• Strongly typed (compile- and run-time type checking)

Programming in Limbo

26Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Basic types
• int — 32-bit, signed 2’s complement notation
• big — 64-bit, signed 2’s complement notation
• byte — 8-bit, unsigned
• real — 64-bit IEEE 754 long float
• string — Sequence of 16-bit Unicode characters

• Structured Types
• array — Array of basic or structured types
• adt, ref adt — Grouping of data and functions
• list — List of basic or structured data types, list of list, etc.
• chan — channel (inter-thread communication path) of basic or structured type
• Tuples — Unnamed collections of basic / structured types

Language Data Types

27Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Limbo module implementations (like above) usually placed in a file with “.b” suffix

• Compiled modules placed in “.dis” (contain bytecode for execution on Dis VM)

Hello World

implement HelloWorld;

include “sys.m”;
include “draw.m”;

sys: Sys;

HelloWorld: module
{

init: fn(ctxt: ref Draw->Context, args: list of string);
}

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello World!\n”);

}

28Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Applications are structured as a collection of modules

• Component modules of an application are loaded
dynamically and type-checked at runtime
• Each compiled program is a single module

• Any module can be loaded dynamically and used by another module
• Shell loads helloworld.dis when instructed to, and “runs” it

• There is no static linking
• Compiled “Hello World” does not contain code for print etc.

Modules

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello!\n”);

}

29Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Module interface definitions often placed in separate “.m” files by convention
• Module definitions define a new “type”
• Compiled modules in “.dis” file contains this type information
• lvalue of a load statement must match this type

Hello World

implement HelloWorld;

include “sys.m”;
include “draw.m”;

sys: Sys;

HelloWorld: module
{

init: fn(ctxt: ref Draw->Context, args: list of string);
}

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello!\n”);

}

Module Name

Various Includes

Module Type (interface) Definition

Module Implementation

30Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Module type information is statically fixed in caller
module, but the actual implementation loaded at run
time is not fixed, as long as it type-checks

Dynamic Loading of
Modules

Sh module (the command shell)
loads the Bufio, Env and other
modules at runtime. The Env
module loads other modules that
it may need (e.g., Readdir)

31Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• An extensible packet sniffer architecture

• Dynamically loads and unloads packet decoder modules
based on observed packet types

• All implementations of packet decoders conform to a given module type (module
interface difinition)

• File name containing appropriate decoder module is “computed” dynamically
from packet type (e.g., ICMP packet inside Ethernet frame) , and loaded if
implementation is present

• New packet decoders at different layers of protocol stack can be added
transparently, even while Xsniff is already running!

Dynamic loading
example: Xsniff

32Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Xsniff (1)

Xsniff Module Definition

implement Xsniff;

include "sys.m";
include "draw.m";
include "arg.m";
include "xsniff.m";

Xsniff : module
{

DUMPBYTES : con 32;

init : fn(nil : ref Draw->Context, args : list of string);
};

sys : Sys;
arg : Arg;
verbose := 0;
etherdump := 0;
dumpbytes := DUMPBYTES;

init(nil : ref Draw->Context, args : list of string)
{

n : int;
buf := array [Sys->ATOMICIO] of byte;

sys = load Sys Sys->PATH;
arg = load Arg Arg->PATH;

Modules which will
be run from shell
must define “init”
with this signature

33Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Xsniff (2)
dev := "/net/ether0";
arg->init(args);

 # Command line argument parsing. Omitted...

Open ethernet device interface
tmpfd := sys->open(dev+"/clone", sys->OREAD);

Determine which of /net/ether0/nnn
n = sys->read(tmpfd, buf, len buf);
(nil, dirstr) := sys->tokenize(string buf[:n], " \t");

channel := int (hd dirstr);
infd := sys->open(dev+sys->sprint("/%d/data", channel),

 sys->ORDWR);

sys->print("Sniffing on %s/%d...\n", dev, channel);
tmpfd = sys->open(dev+sys->sprint("/%d/ctl", channel),

 sys->ORDWR);

Get all packet types (put interface in promisc. mode)
sys->fprint(tmpfd, "connect -1");
sys->fprint(tmpfd, "promiscuous");

Spawn new thread w/ ref to opened ethernet device
spawn reader(infd, args);

}

spawn statement
creates new thread

from function

Open data interface
for Ethernet driver

Open control
interface for

Ethernet driver

34Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Xsniff (3)
reader(infd : ref Sys->FD, args : list of string)
{

n : int;
ethptr : ref Ether;
fmtmod : XFmt;

ethptr = ref Ether(array [6] of byte, array [6] of byte,
 array [Sys->ATOMICIO] of byte,0);

while (1)
{
 n = sys->read(infd, ethptr.data, len ethptr.data);

 ethptr.pktlen = n - len ethptr.rcvifc;
 ethptr.rcvifc = ethptr.data[0:6];
 ethptr.dstifc = ethptr.data[6:12];

 nextproto := "ether"+sys->sprint("%4.4X",
 (int ethptr.data[12] << 8) |

 (int ethptr.data[13]));

 if ((fmtmod == nil) || (fmtmod->ID != nextproto))
 {
 fmtmod = load XFmt XFmt->BASEPATH +
 nextproto + ".dis";
 if (fmtmod == nil) continue;
 }

 (err, nil) := fmtmod->fmt(ethptr.data[14:], args);
}

return;
}

Compute a module
implementation file name,
based on Ethernet frame

nextproto field

Try to load an
implementation from the
file name computed (e.g.,
will be ether0800.dis if

frame contained IP)

Decode frame, possibly
passing frame to further

filters

35Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Channels are communication paths between threads

• Declared as chan of <any data type>
• mychan : chan of int;
• somechan : chan of (int, string, chan of MyAdt);

• Synchronous (blocking/rendezvous) communication
between threads

• Channel operations
• Send : mychan <-= 5;

• Receive : myadt = <- somechan;

• Alternate (monitor multiple channels for the capability to send or receive)

Channels

36Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Channels : Eratosthenes Sieve
implement Eratosthenes;
...
init(nil : ref Draw->Context, nil : list of string)
{

sys = load Sys Sys->PATH;

i := 2;
sourcechan := chan of int;
spawn sieve(i, sourcechan);
while () sourcechan <-= i++;

}

sieve(ourprime : int, inchan : chan of int)
{

n : int;
sys->print("%d ", ourprime);
newchan := chan of int;

while (!((n = <-inchan) % ourprime)) ;

spawn sieve(n, newchan);
while ()
{
 if ((n = <-inchan) % ourprime)
 {
 newchan <-= n;
 }
}

}

37Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Inferno Overview

• Abstraction and resources as files in Inferno

• The Limbo programming language

• Pervasive computing with Inferno and Limbo

• Summary

Talk Outline

38Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Build distributed applications
• Limbo module system, language level-channels, ease of writing user-level resource

servers (resources as files)

• Cross platform
• Portions of single application can run on a heterogeneous set of hardware and

OS platforms, with a combination of native Inferno and emulator or Styx
implementation

• Easily integrate special purpose hardware (e.g., a networked sensor) using Styx

• Cross protocol
• Uniformly deploy networked applications, taking advantage of network protocol,

authentication and encryption support

Inferno and Limbo for
Pervasive Computing

39Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• PC
• Running emulator over

Windows

• VCR/DVR
• Running Linux, and a Styx

server implemented in C

• Digital Camera
• Running some RTOS (e.g.,

DigitaOS) and a Styx
implementation (C ? ASM ?)

• PDA
• Ipaq running native Inferno for

the StrongARM processor

Example

Goal : Take pictures on camera, store time-lapse images
on DVR, control from either PC, camera or PDA

(Example from Vita Nuova Inferno Overview Document)

40Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Attach remote name
space via mount (recall
discussion of mount driver, and
Styx)

Example

(Example from Vita Nuova Inferno Overview Document)

mount tcp!182.1.1.2 /n/remote/vcr
mount tcp!182.1.1.3 /n/remote/camera

41Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Re-align the
placement of remote
name space in current
name space by bind

Example

(Example from Vita Nuova Inferno Overview Document)

bind -a /n/remote/vcr /homenetwork/vcr
bind -a /n/remote/camera /homenetwork/camera
bind -a ‘#Uc:/MyPhotos’/homenetwork/MyPhotos

42Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Controlling entire heterogeneous system is easy because all
resources can be controlled by simple commands from the
command line (or in a simple application)

• Can easily add or remove resources, change which device
controls or stores, simply by rearranging name space

Example
echo ‘record single frame’ > /homenetwork/vcr/ctl
echo ‘picture type jpg’ > /homenetwork/camera/ctl
while : ; do
echo ‘snap’ > /homenetwork/camera/ctl
photo=‘cat /homenetwork/status’
cp /homenetwork/camera/photos/$photo.jpg /homenetwork/MyPhotos
cp /homenetwork/camera/photos/$photo.jpg /homenetwork/vcr/data
echo ‘next frame’ > /homenetwork/vcr/ctl
echo ‘delete $photo’ > /homenetwork/camera/ctl
sleep 10
done
echo ‘record off’ > /homenetwork/vcr/ctl
echo ‘rewind’ > /homenetwork/vcr/ctl

43Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

• Resource abstraction is good

• Files are just an abstraction, not inherently tied to disk

• Represent resources as files

• Access resources with a simple protocol (Styx)

• Limbo language is good clean fun!

• Inferno
• Runs natively on many processor architectures
• Emulator runs on a wide variety of host platforms

• It’s easy to distribute resources in a heterogeneous
network when all resources are represented as files

Summary

44Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

Free Review Copy
http://dsonline.computer.org/books/list.htm
Great opportunity to see your review in print, and get

a free copy to boot!

Book’s web page
http://www.gemusehaken.org/ipwl/
Complete source for all examples from

book, and more

45Pervasive Computing with Inferno and Limbo Invited Lecture, UC Irvine, October 9th 2003

!ank y"

