
IWP9 2006, Madrid

Phillip Stanley-Marbell
Carnegie Mellon University

Implementation of a
Distributed Full-System

Simulation Framework as a
Filesystem Server

IWP9 2006

↩

Computation
and sensing

Substrate material (e.g.,
plastic, paper, human flesh)

Mechanical
actuator

Communication
interconnect

Motivation

• Context
– Investigating highly-integrated networks of compute/sensing/actuation systems

– We currently cannot afford ($) to build systems with thousands of nodes

– Simulation permits the investigation of large scale systems

– Simulation is not a substitute for actual hardware

• Challenge: simulating large scale (thousand+ node) systems
2

Bottom Surface

Top Surface

[“An 0.9x1.2 Energy-Harvesting System
with Custom Multi-Channel Communication
Interface”, IEEE DATE’07, Nice, France]

IWP9 2006

↩

Outline

• Motivation

• Simulation Framework Overview

• Distributed Simulation

• Multi-Platform Packaging

• Summary

3

IWP9 2006

↩

Sunflower Full-System Simulator
• Simulation Engine Models:

– Computation — at instruction execution level, for two different ISAs

– Communication — at the MAC and PHY levels

– Compute & network power dissipation — includes instruction-level power models

– Batteries and voltage regulators — models for several batteries and regulators

– Device and networking faults — bit-level logic upsets and node / network failures

– Physical phenomena external to hardware — location in three-space, attenuation

• Example composition of a simulated system:

4

!"na%&g!(en*&+*,ic+&a+chitect1+e!
(im1%ati&n !3et4&+5

!6nte+7ace*

8&4e+!9*timati&n8&4e+!9*timati&n

:&%tage!;eg1%at&+!,&<e%

=atte+>!,&<e%

?ai%1+e!,&<e%ing
3et4&+5
,e<i1m!@

3et4&+5
,e<i1m!A

3et4&+5
,e<i1m!B

"na%&g!
*igna%!@

"na%&g!
*igna%!A

@

0

A

B

?ai%1+e!,&<e%ing

(igna%!8+&Dagati&n!
,&<e%
Eata!F+an*mi**i&n!
,&<e%

"na%&g!
*igna%!B G(igna%!*Datia%!

atten1ati&n!m&<e%

(igna%!timeH
Ia+>ing!amD%it1<e!

[“Sunflower: Full-System Embedded Microarchitecture Evaluation”, HiPEAC ’07, Ghent, Belgium]

IWP9 2006

↩

• Simulation engine implemented in C
– Originally implemented as a standalone application on Unix

• Challenges
– Simulating large systems (thousands of nodes) can be tasking, even on a high-end workstation

– Especially so, when modeling all the aforementioned components

– Can split simulation across multiple workstations

– Nodes simulated on separate hosts may communicate : must handle that

– Must keep passage of time synchronous across portions of partitioned simulation

Sunflower Full-System Simulator

5

!"na%&g!(en*&+*,ic+&a+chitect1+e!
(im1%ati&n !3et4&+5

!6nte+7ace*

8&4e+!9*timati&n8&4e+!9*timati&n

:&%tage!;eg1%at&+!,&<e%

=atte+>!,&<e%

?ai%1+e!,&<e%ing
3et4&+5
,e<i1m!@

3et4&+5
,e<i1m!A

3et4&+5
,e<i1m!B

"na%&g!
*igna%!@

"na%&g!
*igna%!A

@

0

A

B

?ai%1+e!,&<e%ing

(igna%!8+&Dagati&n!
,&<e%
Eata!F+an*mi**i&n!
,&<e%

"na%&g!
*igna%!B G(igna%!*Datia%!

atten1ati&n!m&<e%

(igna%!timeH
Ia+>ing!amD%it1<e!

!"#$layer traces gathered from an
act5al 6ireless 8"N 5sing !t#ereal

!odeled
:ireless
Net6or;

!icrorchitect5re
optimi=ed for

e>ec5tion of ?@A.CC
!"# layer encryption Net6or;

 Dnterfaces

Eo6er Fstim. Eo6er Fstimation

Goltage Heg5lator !odel

Iattery !odel

J

@

C

A

K

!"#$layer traces gathered from an
act5al 6ireless 8"N 5sing !t#ereal

!odeled
:ireless
Net6or;

!icrorchitect5re
optimi=ed for

e>ec5tion of ?@A.CC
!"# layer encryption Net6or;

 Dnterfaces

Eo6er Fstim. Eo6er Fstimation

Goltage Heg5lator !odel

Iattery !odel

J

@

C

A

K

IWP9 2006

↩

Outline

• Motivation

• Simulation Framework Overview

• Distributed Simulation

• Multi-Platform Packaging

• Summary

6

IWP9 2006

↩

Distributed Simulation

• Challenges
– An efficient / easy way to connect state of portions of sim across hosts

– A means of ensuring the state of simulation across hosts is consistent

– An interface to keep track of hosts, global simulation state, etc.

• Approach
– There are many ways you could do this...

– Chose to take advantage of ease of connecting systems with Inferno

• Implementation
– Simulation engine compiled as a library, linked against emu (chose not to use libstyx)

– All relevant state on each host exposed as a filesystem, via a device driver interface

– “Glue” application connects together name spaces, keeps engine state consistent

7

IWP9 2006

↩

Simulation Engine Interface

• Interface to simulation engine is a device driver, devsf, #j
– Dynamic filesystem interface w/ one line directory per simulated node (processor+batt, etc)

– Exposes simulation engine state (e.g., simulated MAC-layer frames via netin, netout)

8

en#ine%attac)name+

!tl

in&o

n(tin

n(tout

,+

!tl

in&o

st+(,,

st+in

st+out

simulation-wide state

node-specific state

control/status

MAC layer state

}
} }

}

IWP9 2006

↩

Simulation Glue Logic

• “Glue” application (implemented in Limbo)
– Engine filesystems from different simulation hosts mounted in name space of glue app

– Interconnects simulated networks on different hosts

– Implements facilities for synchronizing virtual time across portions of simulated system

9

en#ine%attac)name+

!tl

in&o

n(tin

n(tout

,+

!tl

in&o

st+(,,

st+in

st+out

en#ine%attac)name+

!tl

in&o

n(tin

n(tout

,+

!tl

in&o

st+(,,

st+in

st+out

host 1 host n

n

GUI + simulation “glue”

IWP9 2006

↩

Distributed Simulation

• Synchronization issues
– Simulation rates across hosts may vary, but global timebase must remain synchronized

– Well known issues, already investigated in the area of parallel discrete-event simulation

• Synchronization facilities
– Time synchronization

– Simulation rate synchronization

10

Simulated +etwork 0 Simulated +etwork 1 2

Simulated 3nalog Signals

!"#u%&te)*+,)e-

!imu%ation +ost - !imu%ation +ost . !imu%ation +ost /

.,c&%*0re&*+et2,r3

4entr&%*
!"#u%&t",n*4,ntr,%%er

Example: seven nodes + networks + signal split across three simulation hosts

1 2 3 4 5 6 7

IWP9 2006

↩

GUI + Glue Logic Application

11

!essage
output window

Command input

Connected local
and remote

simulation engines

Pull-down menu with shortcuts for common commands Button shortcuts for 9glue9
commands

clicking on a node
makes it the current

 node ; < host ;

=ummary of statistics
for current node

?arning
messages

Error
messages

IWP9 2006

↩

Outline

• Motivation

• Simulation Framework Overview

• Distributed Simulation

• Multi-Platform Packaging

• Summary

12

IWP9 2006

↩

Multi-Platform Packaging

• Goal — Implementation transparency
– A single executable binary, indistinguishable from a native app. on host platform

– Should not require (explicit or automatic) installation of Inferno

• Implementation
– All the necessary dis executables, fonts, etc. compiled into in-memory root filesystem

– Simulation engine library & driver interface (#j)

– Server mode or client mode, w/ GUI or server app. instead of emuinit.dis → sh.dis

– Reads / writes from host filesystem like any other host application (via #U)

– On most platforms, binary is ~2—5 MB; self-contained executable

• Alternative — don’t roll filesystem into emu binary image
– Distribute emu + Inferno filesystem tree (acme-sac does this)

– I currently think a single-executable approach is cleaner for our purposes

13

IWP9 2006

↩

Multi-Platform Packaging

• Distributed as a single executable, no installation reqd.
– 2.5MB binary on MacOS, 5.2MB binary on Linux, 2.7MB .exe on Windows

14

Mac OS X

Windows 2000

Linux

IWP9 2006

↩

Outline

• Motivation

• Simulation Framework Overview

• Distributed Simulation

• Multi-Platform Packaging

• Summary

15

IWP9 2006

↩

Summary

• Sunflower
– A full-system simulator for networks of embedded systems

• Problem
– Simulation of large networks (thousand+ nodes) is compute- and memory intensive

– Simulation can be split at the level of individual nodes (with some added work)

• Distributed simulation
– Simulation engine compiled as a Inferno emulator library

– Device driver (#j) interface to simulation state

– GUI+glue application interconnects simulated state across multiple simulation hosts

– Integration into Inferno enables easy multi-platform packaging/GUI

• Sources, binaries, documentation
– http://www.ece.cmu.edu/~pstanley/sunflower

16

http://www.ece.cmu.edu/~pstanley/sunflower
http://www.ece.cmu.edu/~pstanley/sunflower

↩
IWP9 2006

Backup Slides
17

Backup Slides

↩
IWP9 2006

Backup Slides

Hardware Emulation Environment —
Sunflower Simulator

18

Mainframes*
!at$h&'r)$e++,-./&0at$h&123 123&t)&4e4)r5/&6,+7/&86,+'la5:;)4'<tat,)-

Minicomputers*&
=,4e+har,-./&,-tera$t,>e&123

123&t)&
-et?)r7123&t)&4e4)r5/&6,+7/&6,+'la5;)4'<tat,)-

@el,a0,l,t5A)?er&
$)-+<4't,)- =her4al+123&t)&

-et?)r7
123&t)&4e4)r5/&6,+7/&

6,+'la5;)4'<tat,)-
PCs2 workstations2 ser6ers*&
1-tera$t,>e/&-et?)r7e6&123/&
')?er/&ther4al&$)-$er-+

@ealBt,4e&123&t)&
a-al).&+e-+)r+ !atter5&l,Cet,4e @el,a0,l,t5A)?er&$)-+<4't,)- =her4al+123&t)&-et?)r7;)4'<tat,)-Em8edded computing

systems*&@ealBt,4e/&,-tera$t,>e/&
123&?,th&a-al).&+,.-al+/&
-et?)r7e6/&0atter5&')?ere6D

E>al<at,)-&4etr,$+&rele>a-t&t)&4,$r)arh,tet<reF+&'erC)r4a-$e&

↩
IWP9 2006

Backup Slides

Hardware Emulation Environment —
Sunflower Simulator

19

!"na%&g!(en*&+*,ic+&a+chitect1+e!
(im1%ati&n !3et4&+5

!6nte+7ace*

8&4e+!9*timati&n8&4e+!9*timati&n

:&%tage!;eg1%at&+!,&<e%

=atte+>!,&<e%

?ai%1+e!,&<e%ing
3et4&+5
,e<i1m!@

3et4&+5
,e<i1m!A

3et4&+5
,e<i1m!B

"na%&g!
*igna%!@

"na%&g!
*igna%!A

@

0

A

B

?ai%1+e!,&<e%ing

(igna%!8+&Dagati&n!
,&<e%
Eata!F+an*mi**i&n!
,&<e%

"na%&g!
*igna%!B G(igna%!*Datia%!

atten1ati&n!m&<e%

(igna%!timeH
Ia+>ing!amD%it1<e!

↩
IWP9 2006

Backup Slides

Using Real Network Traces

20

!AC layer trace
collection /e0g0, 3ith

Ethereal6

tracetool7 conversion o:
!AC layer trace in

lib<ca< :ormat
Simulation

↩
IWP9 2006

Backup Slides

Example: Using Real Network Traces

21

!"#$layer traces gathered from an
act5al 6ireless 8"N 5sing !t#ereal

!odeled
:ireless
Net6or;

!icrorchitect5re
optimi=ed for

e>ec5tion of ?@A.CC
!"# layer encryption Net6or;

 Dnterfaces

Eo6er Fstim. Eo6er Fstimation

Goltage Heg5lator !odel

Iattery !odel

J

@

C

A

K

↩
IWP9 2006

Backup Slides

Modeled 16-bit Microarchitecture (TI MSP430)

22

! Structures modeled at bit-le2el3 enabling signal transition acti2ity and SE8 modeling

!rogram
Counter

9:
Arc/itectural

registers
clk

clk

clk

data

3n-c/i5

SRAMaddr

Interru5t
Controller

data

addr

clk

clk

!rogrammable
clock source

clk

E=ecute

Decode

Fetc/

Memory-ma55ed
5eri5/erals

<imer = R<C
8AR<

A=D Con2erter
BPIO

Fatchdog <imer

↩
IWP9 2006

Backup Slides

Modeled 32-bit Microarchitecture (Hitachi SH)

23

!" $ %
Architectural

registers
clk

clk

data

Main
memoryCache

address

data

addr

addr

clk

clk
data

clk
Memory-mapped

peripherals

/imer 2 R/C
UAR/

A2D Con:erter
;attery Monitor
Failure Monitor

@etwork InterCace

D Etructures modeled at bit-le:elH enabling monitoring oC signal transition acti:ity and EEUs during simulation

Programmable
clock source

Program
Counter

clk

Interrupt
Controller

R
egister File w

rite-back

M
em

ory A
ccess

>?ecute

D
ecode

Fetch

Memory
Management
Anit BMMAC

↩
IWP9 2006

Backup Slides

Communication Interface Modeling

24

!
om

m
$n

ic
at

io
n

m
ed

i$
m

-et.or0 interface

!"#$%&'#())"*+
,-."%/(0"+%"1,2."%23

si3e con!g$ra56e
in sim$6ation

45+6768

95+6768

si3e con!g$ra56e
in sim$6ation

M
8!

-6a
ye

r
co

66is
io

n
re

try

a6
go

rit
;m

<=
>-

6a
ye

r s
ig

na
6

pr
op

ag
at

io
n

m
od

e6

-
et

.
or

0
In

te
rfa

ce
 F

ai
6$

re
 M

od
e6 Transmit

po.er
cons$mption

ReceiDe po.er
cons$mption

Id6e po.er
cons$mption !o66ision !o$nt Register

EEE

TX Gata Register
TX Htat$s Register

↩
IWP9 2006

Backup Slides

Creating Arbitrary Topologies

25

!

6
Networ) medium

System 2modeled processor core, etc78

1 2 ; 4

=>?

Networ) interface

↩
IWP9 2006

Backup Slides

Rich Set of Stochastic Distribution
Generators

26

!"tremal Value
,egative 0inomial
Pearson Type III

Rayleig:

Student t, >

?og Series
?ogistic

Ma"well

?og ,ormal

Cibrat

!2, ! , ", F
0eta Prime

!rlang
Fermi-Hirac

Fis:er->
Cumbel
Camma
?aplace

Caussian
Pareto
Ieibull

Cauc:y
!"ponentialK4-bit pseudo-

random number
generator

Inverse Transform
Met:od

Nccept O RePect
Met:od

Qniform RV

on R0, 2K4 - 1U

S!Q Modeling

,ode Failure
Modeling

Communication
Failure Modeling

Microarc:itectural
parameters

Random Variables from some
common distributions

• All built upon a 64-bit pseudo-random number generator with
very large period [Nishimura]

↩
IWP9 2006

Backup Slides

Battery Subsystem Model

27

!"re%"&'(

)&*p,r,t&r

.&'t,/e0
1e/u',t&r0
3&(e'

4,tter503&(e'
interrupt

3i7r&,r7"ite7ture0p&8er0
e%ti*,ti&n

)&**uni7,ti&n0inter:,7e0
p&8er0e%ti*,ti&n

↩
IWP9 2006

Backup Slides

Distributed Simulation

28

Simulated +etwork 0 Simulated +etwork 1 2

Simulated 3nalog Signals

!"#u%&te)*+,)e-

!imu%ation +ost - !imu%ation +ost . !imu%ation +ost /

.,c&%*0re&*+et2,r3

4entr&%*
!"#u%&t",n*4,ntr,%%er

↩
IWP9 2006

Backup Slides

Example Memory Map

29

 "# $ 0& a##$u &p(&p()*+
 "# $ 4& &, &-(./0&p1
 "# $ 8& 2o4e &-(a-
 "# $ c& lu$ a-(-7-
 "# $ 10& &, &8(.90&p1
 "# $ 14& a##$u a-(a-(-
 "# $ 18& l$ a.(8+
 "# $ 1c& a##$u 4-(&p(8+

 "# $ 20& 2o4e &8(a8
 "# $ 24& lu$ a8(-7:::/
 "# $ 28& &, ra(/-0&p1
 "# $ 2c& &, &<(<+0&p1
 "# $ 30& &, &.(<.0&p1
 "# $ 34& &,c8 >:.8(/90&p1
 "# $ 38& &,c8 >:.-(*.0&p1
 ???

"# - Interrupt)e*t+r ,a.le
.ave re3is6ers
...
!andle interrupt
...
8es6ore re3is6ers

-nterrupt

(e.3., <e6wor>,
?a66er@, 6imer,
failure, e6c.)

Femor@-Fapped
8e3is6ers

Fai< Femor@

J<6errup6 Kec6or La?le

!a#$%e'(r*$'a+$(,$-.'/late2
$$$$$+r(3e--.45$ele'e4t-6

!7#$E9a'+le$,l(:$(,$.4-tr/3t.(4$e9e3/t.(4$.4$the
$$$$$$+re-e43e$(,$.4terr/+t-$,r('$'(2ele2$+er.+heral-

↩
IWP9 2006

Backup Slides
30

Sunflower Simulator / HW EMulator

↩
IWP9 2006

Backup Slides
31

Modeling Computation

• Modeled ISA
– Hitachi SH ISA, support for new ISAs being added

– Applications (e.g., SPEC CPU 2000) compiled with GCC 3.x toolchain, Hitachi/Renesas HEW
compiler, Microsoft VC for Hitachi SH, ...

– Should be able to compile apps in any source language that GCC or any of the compilers
support (C, C++, FORTRAN, Java, Chill, Ada)

• Microarchitecture
– Detailed simulation of SH3 family pipeline

• Processor peripherals and interrupt sources
– SH3’s UART, Timer Unit

– Added new peripherals: Network Interface, Sensors, Random Number Source, Logging,
Simulator Control Interface

↩
IWP9 2006

Backup Slides
32

Application’s View

• Peripherals and interrupt sources
– Interaction with modeled peripherals and simulation

control and is through memory-mapped registers

– Interrupt sources: network, device failures, battery
status, timer

• Typical application style:
– main()+interrupt handler

– E.g., received network frames handled in network
intr handler, periodically scheduled tasks triggered by
timer interrupts

– Rudimentary device drivers and interrupt handling
code is often reused

Application

0x8000000

0x8001000

0x80FFFFF

0x8000600

Stack

0x8003000

Heap

0xFFFF0000

0xFFFFFFF0
Memmory Mapped Registers

Interrupt Vector Base

Monitor

Memory Map

↩
IWP9 2006

Backup Slides
33

Modeling Physical Phenomena

• Modeling both computation and the physical phenomena
that drive computation is important

• If we’re modeling a sensor network, would like to model the
physics of signal propagation

– Attenuation of signals in space

– Interference between signals

– Location and motion of signal sources in space

↩
IWP9 2006

Backup Slides
34

Modeling Physical Phenomena

• Example
– 2 light sources with Gaussian spread of intensity from peak
– The light sources move according to trajectories specified by a LUT

Example user-specified signal source trajectories

Source 1

Source 2
x

Example user-specified signal source attenuation

S
ig

na
l

st
re

ng
th

Radial distance from signal location y

↩
IWP9 2006

Backup Slides
35

Modeling Physical Phenomena

• Signal attenuation
– Attenuation with radial distance, x, specified by providing coefficients for

 S(Axm + Bxn + Cxo + Dxp + EK
(Fxq+ Gxr + Hxs + Ixt))

– Example, for Gaussian spread light source with peak intensity S, E=1, K= e, F = -0.5, q = 2,
all other coefficients are 0

• Signal trajectory
– Trajectory and speed specified as a list of way-points and sampling rate

– Notion of time in physical models is synchronized with ISA simulation, communication
modeling, battery models, etc.

↩
IWP9 2006

Backup Slides
36

Modeling
Communication

• Model
– Each processor can have multiple network interfaces (NICs) instantiated

– Within a simulation, multiple network segments are instantiated

– NICs are connected to network segments to create arbitrary topologies

• Application’s view
– Code running over simulator sees NIC as a memory-mapped peripheral

– Interrupts generated for TX/RX and various errors

Point⌧to⌧point Communication Links

Processing Device

Network interface

Shared Communication Link

↩
IWP9 2006

Backup Slides
37

Modeling
Communication

• Network Segment (Defines properties of physical link)
– Bit rate

– Frame size

– Number of simultaneous transmissions that can be accommodated

– Rate and distribution of intermittent failures

– Signal propagation properties, same model as described for phy. sources

– Minimum SNR before introducing bit errors

• Network Interface
– Transmit, receive and idle power consumption

– Number of TX and RX FIFO entries

↩
IWP9 2006

Backup Slides
38

Power Estimation

• 3 different methods for power estimation

• Requires most effort, slower, not always practicable:
– Signal transition activity reported per cycle for pipeline latches, buses, register file,

cache ports, usage of FUs

– Requires capacitance values to obtain power estimates

• Better tradeoff:
– Characterized instruction-level power model

– Requires empirical measurements on actual hardware

• Simplest:
– Specify average active and sleep power consumption, e.g., from a device manufacturer’s

data sheet

↩
IWP9 2006

Backup Slides
39

Power Estimation

• Simulator includes an instruction-level power model for the
Hitachi SH7708

• Empirical measurements using SH7708 eval. board
– Measured average current draw for a fixed set of operand values, for each instruction in the

ISA (~160 instructions / different addressing modes)

– No inter-instruction effects

– Non-idempotent instructions like TRAP can’t be subjected to this method

↩
IWP9 2006

Backup Slides
40

Power Estimation

• Signal transition activity estimation
– Signal transitions as encoded/decoded instructions move through pipeline

– Register file, program counter

– Data and address buses

– Cache read/write ports

– No modeling of internals of functional units

• When is transition activity estimation useful ?
– Comparative studies of signal transition activity in the modeled structures

– If you have capacitance values; this may not be available until after floor-planning and
layout

↩
IWP9 2006

Backup Slides
41

Power Estimation

• Other details

• Sleep mode
– Reduced power consumption when application executes a sleep instruction (until next

interrupt)

• Voltage and frequency scaling during simulation
– Under simulated application’s control via simulator control register

– Interactively via command prompt

– Independent voltage and frequency scaling or scale VDD and freq. in tandem for a
specified Vt and technology-dependent α

↩
IWP9 2006

Backup Slides
42

Battery Subsystem

• One or more devices can be attached to a battery system

• Sampled current draw periodically supplied to battery subsystem

• Current passed to a model for a DC-DC converter, then to model for electrochemical cell

• Models based on discrete-time battery model from [L. Benini et al., TVLSI ‘01]

“Battery”

Electrochemical Cell

DC-DC
Converter

Network interface power
consumption + Processor power
consumption

DC-DC Converter
LUT from data sheet

Electrochemical cell discharge profile

Efficiency vs. current
for Maxim MAX1652

↩
IWP9 2006

Backup Slides
43

Modeling Failures

• Computation Failures
– Event upsets within microarchitecture or treat each processor as a unit that may fail en-

masse with some probability

– Intermittent failures with a specified rate and distribution for which processor is
temporarily inactive

– Correlated failures between processing elements and network segments

• Communication failures
– Also permit configuration of intermittent failures of network segments

– If a network is associated with a physical signal model, induce bit errors when SNR drops
below a specified threshold

↩
IWP9 2006

Backup Slides
44

Implementation

• Simulator core written in C, interactive command parser and built-in
assembler specified in Yacc

• Runs on *BSD, Linux, MacOS, Windows

• Console application or with GUI

• GUI and simulation parallelization implemented with the Inferno OS and
Limbo programming language

