Implementation of a
Distributed Full-System
Simulation Framework as a

Filesystem Server

Phillip Stanley-Marbell

Carnegie Mellon University

IWP9 2006, Madrid

Motivation

Substrate material (e.g.,
plastic, paper, human flesh)

0.9 inches
e -..

Communication

Computation)
interconnect

Mechanical and sensing

actuator

1.2 inches

Bottom Surface

. -l [“An 0.9x1.2 Energy-Harvesting System
o with Custom Multi-Channel Communication
Top Surface Interface”, IEEE DATE’07, Nice, France]

« Context
- Investigating highly-integrated networks of compute/sensing/actuation systems
- We currently cannot afford (S) to build systems with thousands of nodes
- Simulation permits the investigation of large scale systems

- Simulation is not a substitute for actual hardware

e Challenge: simulating large scale (thousand+ node) systems g

IWP9 2006

N

Outline

Simulation Framework Overview

Distributed Simulation

Multi-Platform Packaging

Summary

IWP9 2006

Sunflower Full-System Simulator

e Simulation Engine Models:

Computation — at instruction execution level, for two different ISAs
Communication — at the MAC and PHY levels

Compute & network power dissipation — includes instruction-level power models
Batteries and voltage regulators — models for several batteries and regulators
Device and networking faults — bit-level logic upsets and node / network failures
Physical phenomena external to hardware — location in three-space, attenuation

e Example composition of a simulated system:

Failure Modeling

Signal Propagation

Model

Model

Signal time-
varying amplitude

[“Sunflower: Full-System Embedded Microarchitecture Evaluation”, HIiPEAC 07, Ghent, Belgium]

Medium 1 B Microarchitecture
Analog Simulati
Data Transmission imulation

Failure Modeling
Network
Analog Sensors e-e

signal 1 Network

Network
Medium 2

Power Estimation Power Estimation

Voltage Regulator Model

fona 3™ ek e | T
signal 3 Medium 3 signal 2 - Battery Model

IWP9 2006

Interfaces .

N

Sunflower Full-System Simulator

Simulation engine implemented in C

- Originally implemented as a standalone application on Unix

e Challenges
- Simulating large systems (thousands of nodes) can be tasking, even on a high-end workstation
- Especially so, when modeling all the aforementioned components

- Can split simulation across multiple workstations
- Nodes simulated on separate hosts may communicate : must handle that
- Must keep passage of time synchronous across portions of partitioned simulation

IWP9 2006

(0]

Outline

e Distributed Simulation
e Multi-Platform Packaging

e Summary

IWP9 2006

o

Distributed Simulation

e Challenges
- An efficient / easy way to connect state of portions of sim across hosts
- A means of ensuring the state of simulation across hosts is consistent
- An interface to keep track of hosts, global simulation state, etc.

e Approach
- There are many ways you could do this...
- Chose to take advantage of ease of connecting systems with Inferno

e Implementation

- Simulation engine compiled as a library, linked against emu (chose not to use libstyx)
- All relevant state on each host exposed as a filesystem, via a device driver interface
- “Glue” application connects together name spaces, keeps engine state consistent

IWP9 2006

~N

Simulation Engine Interface

engine.attachname/

! } control/status

— info

simulation-wide state

et } MAC layer state

— netout

I 0/

— ctl

— info e
node-specific state

— stderr

— stdin

— stdout

« Interface to simulation engine is a device driver, devsT, #j

- Dynamic filesystem interface w/ one line directory per simulated node (processor+batt, etc)
- Exposes simulation engine state (e.g., simulated MAC-layer frames via netin, netout)

IWP9 2006

(00}

Simulation Glue Logic

GUI + simulation “glue”

host 1 I I host n

— ctl — ctl

— info — info

— netin — netin

— netout — netout

— 0/ —n/

HEBN
— ct1 — ctl
info info

— stderr — stderr
— stdin — stdin
— stdout — stdout

o “Glue” application (implemented in Limbo)

- Engine filesystems from different simulation hosts mounted in name space of glue app
- Interconnects simulated networks on different hosts
- Implements facilities for synchronizing virtual time across portions of simulated system

IWP9 2006

O

Distributed Simulation

Local Area Network

e T |

Central
Simulation Controller

4

e 2o 3o - 5 g i ;
, D D [X] D GEED [[X] GEED aEED | | \
| CE— D D | . Gl | |
. Simulated Network 1 i Simulated Network 2 | i 3 i
i E Simul?ted Analog Signals i i i
Example: seven nodes + + signal split across three simulation hosts

e Synchronization issues
- Simulation rates across hosts may vary, but global timebase must remain synchronized
- Well known issues, already investigated in the area of parallel discrete-event simulation

e Synchronization facilities

- Time synchronization
- Simulation rate synchronization

IWP9 2006 10

GUI + Glue Logic Application

Pull-down menu with shortcuts for common commands Button shortcuts for "glue”

commands
006 X! sunflower o
Sunflower Config Simulate Connect Tools Help active splice* off on* eqtp eqp eqr C|ICkIng on a node
Message zg:z;g:d;’:gagggm;;:] . makes it the current
Output window pone loading [dam.sr e Taw wem

New node created wit Sjmulator On

one loading [dam.sr Simulator Off . .
node created wit

Simulator Reset 19@0 18@0 17@0 16

Done Toading [dam.sr..
New node created with node ID 17
Done Toading [dam.sr].
New node created with node ID 18 icy Uelcy Uelcy ey

node # @ host #
Done Toading [dam.sr].
New node created with node ID 19
@0 SE@0

7@0 @0
Done Tloading [dam.sr].

New node created with node ID 20
pone Toading [dam.sr]. 360 360

New node created with node ID 21 260 10 0@o
Done Toading [dam.sr].
New node created with node ID 22 f . g
Command input Done Toading [dam.sr]. ID = 00000024 Active = 1 Summary of statistics
p New node created with node ID 23 PC = 080040E6 Tcyc = 2.50E-07
ntrans = 0.00E+00 _ Ecpu = 1.03E-04 for current node
Done Toading [dam.sr]. Tcpu = 1.,38E-01 ninstrs = 1,46E+04
New node created with node ID 24 cputype = SuperH _vdd = 3.30E+00
nicnifcs = nicgintr = 0
Done loading [dam.sr]. P(fail) = 0.00E+00 Max fdur = 1000000
DAM node [23] installing vector code... ;;;gﬁ:%: fgSUSS :'m;cﬁs: fgSgggsﬁ Warnin
3:FIIdam_pEF1Od to 100000 usecs Toc = 40.0.40.0.0.0- sensordo = 1,00E-01 g;
messages
RERN A g

» focus.local (Host #0) .
rror
Connected local

mesSsages
and remote L 9
. . . 115 software is provided with ABSOLUTELY NO WARRANTY. Read LICEMNSE, txt
simulation engines

IWP9 2006 Il

Outline

e Multi-Platform Packaging

e Summary

IWP9 2006

Multi-Platform Packaging

e Goal — Implementation transparency

A single executable binary, indistinguishable from a native app. on host platform
Should not require (explicit or automatic) installation of Inferno

e Implementation

All the necessary dis executables, fonts, etc. compiled into in-memory root filesystem
Simulation engine library & driver interface (#7)

Server mode or client mode, w/ GUI or server app. instead of emuinit.dis — sh.dis
Reads / writes from host filesystem like any other host application (via #U)

On most platforms, binary is ~2—5 MB; self-contained executable

o Alternative — don’t roll filesystem into emu binary image

Distribute emu + Inferno filesystem tree (acme-sac does this)
| currently think a single-executable approach is cleaner for our purposes

IWP9 2006 13

Multi-Platform Packaging

Windows 2000

i Sunflower Simula [e .
Sunflower Config Simulate Connect Tools Help active splice” off* on* eqtp eqmp eqr L| nux
cImitialized random number generata Mac OS X
Mew node created with node I 0 =
: e 06 [X! sunflower
sunfTower 1.0-beta (build 03-30-z00 Sunflower Config Simulare Connect Tools : . - e
authored, 1959-2005, by phillip std - - - Sunflower Config Simulate Connect Tools Help Elad7l splice* off on* eqtp eqmp eqr
Fublic key fingerprint 0284 DEEE E Initialized randon number generator with seed -1958383883. . newbatt ID=17, Capacity_mah=1.00000DE-O1
This software 15 prouided with Apsd Hew node created with node 100 newbatt ID=18, capacity_mAh=1.000000E-01
; . ; batt ID=19, capacity_mAh=1,000000E-01
sunflover 1,0-beta (build 03-31-2008-00:35:07=pstanleydquid new » Capacity -
Authored, 1999-2005, by phillip stanley-narbell, <pstanleyd 2::3:& ;gzg’ E:g::}g-mn:ggggggg_g} se aet 3. 2e 1@
Fublic key fingerprint 0584 DEEE E1FS A20M Q23C ZESE 7FIF F newbatt ID=e2. capac'ity_mah=1:0000005-01
This software 15 provided with ABSOLUTELY WO WARRANTY, Read newbatt m=23: capacity_mah=1 .000000E-01 . - . . .
newbatt ID=24, capacity_mah=1,000000E-01
New node created with node ID 1 0@ 11@2 10@2 sez 862
New node created with node ID 2
New node created with node ID 3
New node created with node ID 4
New node created with node ID S
New node created with node ID & v €5 oS L TS
New node created with node ID 7
New node created with node ID 8
New node created with node ID 9
New node created with node ID 10 14@3 1363 1263 2364 22@4
New node created with node ID 11
New node created with node ID 12
New node created with node ID 13
New node created with node ID 14
New node created with node ID 15 218y 2088 e jLsaY
New node created with node ID 16
New node created with node ID 17
New node created with node ID 18
Done Toading [dam.sr].
New node created with node ID 19
Done Toading [dam.sr].
New node created with node ID 20
X ID = 00000024 Active =0
Done Toading [dam.sr]. PC = 08000000 Tcyc = 2,50E-07
New node created with node ID 21 ntrans = 0,00E+00 Ecpu = 0.00E+00
. Tcpu = 0.00E+00 ninstrs = 0,00E+00
Done loading [dam.sr]. cputype = SuperH vdd = 3,30E+00
—33 New node created with node ID 22 nicnifcs =1 nicgintr =0
. P(fail) = 0.00E+00 Max fdur = 1000000
- . — Done loading [dam.sr]. tripRate = Sim Rate =0
» vmung (Host £0) 33 New node created with node ID 23 Throttle =0 R_active = 0.,000000
X loc = 40,0,40.0,0.0 sensor0 = 0,00E+00
) N Done Tloading [dam.sr].
» slax (Host #0) New node created with node ID 24
Authenticating (SHA-1,RC4)...
=33 Mount. ..
auth d 4, by ¢ Bind. ..
Public K ingerprint o focus.local (Host #0) Host 192.168.1.103 attached.
This software is prowvi sfO (Host #1)
sf1 (Host #2) e
sf2 (Host #3) .
» sf3 (Host #4)

o Distributed as a single executable, no installation reqd.
- 2.5MB binary on MacOS, 5.2MB binary on Linux, 2.7MB .exe on Windows

IWP9 2006

Outline

e Summary

IWP9 2006

Summary

Sunflower
- Afull-system simulator for networks of embedded systems

Problem

- Simulation of large networks (thousand+ nodes) is compute- and memory intensive

- Simulation can be split at the level of individual nodes (with some added work)

Distributed simulation

- Simulation engine compiled as a Inferno emulator library

- Device driver (#7) interface to simulation state

- GUIl+glue application interconnects simulated state across multiple simulation hosts
- Integration into Inferno enables easy multi-platform packaging/GUI

Sources, binaries, documentation

- http://www.ece.cmu.edu/~pstanley/sunflower

IWP9 2006

http://www.ece.cmu.edu/~pstanley/sunflower
http://www.ece.cmu.edu/~pstanley/sunflower

Backup Slides

i)

00000000

Hardware Emulation Environment —
Sunflower Simulator

Evaluation metrics relevant to microarchitecture's performance

Mainframes: !
Batch processing, batch I/O Computation

Minicomputers: C : I/0 to
. A . m
Timesharing, interactive 1/0 omputation network

: I/0 to -
Computation , network INETEIRN Reliability

: Real-time 1/0O to e -
Computation analog sensors I/0 to network Thermals Battery lifetime Reliability

PCs, workstations, servers:
Interactive, networked 1/0,
power, thermal concerns

Embedded computing
systems: Real-time, interactive,
I/0 with analog signals,
networked, battery powered.

IWP9 2006 18

Hardware Emulation Environment —
Sunflower Simulator

Failure Modeling

Signal Propagation
Model

Data Transmission
Model

Signal time-
varying amplitude

Analog
signal 3

Network <_n_'

Medium 1
<—n—~ Analog
signal 1
Network :a_'
Medium 2
Network Analog
Medium 3 signal 2

IWP9 2006

Failure Modeling

. _ |
Microarchitecture /\nalog Sensors

Simulation

Power Estimation
. ' Voltage Regulator Model
Battery Model

Network

Interfaces >

Power Estimation

Using Real Network Traces

MAC layer trace
collection (e.g., with
Ethereal)

tracetool: conversion of
MAC layer trace in
libpcap format

IWP9 2006

Simulation

20

Example: Using Real Network Traces

MAC-layer traces gathered from an
actual wireless LAN using Ethereal [~

Microrchitecture
optimized for
execution of 802.11
MAC layer encryption

Modeled
Network . Wireless

Interfaces <> Network

Power Estimation Power Estim.

Voltage Regulator Model u_,

Battery Model

aosao

.
.

IWP9 2006

Modeled 16-bit Microarchitecture (TI MSP430)

dat data
Memory-mapped | | ata
peripherals | d—ck clk —
: On-chip
Watchdog Timer ‘
--- X addr SRAM
GPIO
clk —
A/D Converter
UART — . addr
Timer / RTC J— clk
16
A A Architectural
registers
clk 7
- 2 4
o] o e
o o e
: Q- P
) (]
Interrupt
Controller
jL jL
Program Programmable clk
Counter clock source

= Structures modeled at bit-level, enabling signal transition activity and SEU modeling

IWP9 2006

Modeled 32-bit Microarchitecture (Hitachi SH)

dat data
Memory-mapped | | ata address
peripherals J— clk clk A
Main
Network Interface Cache memor
Failure Monitor addr »’ y
Battery Monitor
clk — data
A/D Converter
UART — addr)
Timer / RTC J— clk I
Memory 16+ 8
Management Architectural
Unit (MMU) registers
clk 7
)
®
= Q
2 &
®
m & X 9 n
] 0 s < >
o Q c >
=2 Q — 3] s
(1) (1] o =
% ®
» o
D
Q Interrupt
Controller
jL jL jL jL
Program Programmable | clk
Counter clock source

= Structures modeled at bit-level, enabling monitoring of signal transition activity and SEUs during simulation

IWP9 2006

Communication Interface Modeling

Communication medium

Network interface

MAC-layer
collision retry

PHY-layer signal
propagation

algorithm

model

Network Interface Failure Model

Transmit
power
consumption

Receive power
consumption

|dle power
consumption

TX FIFO
Memory-mapped
interface registers:
TX Data Register
- |

size configurable
in simulation

RX FIFO

- >

size configurable
in simulation

TX Status Register

Collision Count Register

IWP9 2006

24

Creating Arbitrary Topologies

Ve N Y N
Ao 4 Ao 4

System (modeled processor core, etc.)

Network interface Fn
Network medlum -

IWP9 2006

25

Rich Set of Stochastic Distribution
Generators

Random Variables from some
common distributions

[Gaussian Ixz, X, B, FILog Normal] SEU Modeling
Pareto Beta Prime | Studentt, z .
. E Weibull % Erlang % Maxwell Node Failure
Uniform RV | Inverse Transform Modeling
64-bit pseudo- 64 Method [Exponential I Fermi-DiracI Logistic } — >
random number | " [0,27"-1] _J Cauchy I Fisher-z I Log Series] Communication
generator — > | Accept/ Reject | Gumbel | Extremal Value | Rayleigh | Failure Modeling
Method [Gamma | Negative Binomial | Gibrat

Microarchitectural

_ Laplace | Pearson Type Iil | parameters

e All built upon a 64-bit pseudo-random number generator with
very large period [Nishimura]

IWP9 2006 26

Battery Subsystem Model

Microarchitecture power
estimation

Communication interface }

power estimation

vV

Battery Model

Comparator

—p> Voltage >
Regulator
Model Threshold ™

IWP9 2006

interrupt

27

Distributed Simulation

Local Area Network

__Simulation Host 1¢ __S_im_UJat_iQD_HQSt_Z____t\ __S_im_UJQﬂQD_HQSt_S___i_\ I

Central
Simulation Controller

) [_J) [_J
——' —_' ——' —_*
(] G (] G [] D (]
D D D D D D D
Simulated Network 1 Simulated Network 2 3

Simul.‘tated Analog Signals

IWP9 2006 28

Example Memory Map

Memory-Mapped
Registers

Main Memory

Interrupt Vector Table

(a) Memory map of simulated
processing elements.

PC + 0: addiu sp,sp,-56
PC + 4: sw s0,24 (sp)
PC + 8: move s0,a0
PC+ c: lui a0, 0x0
PC + 10: SwW sl,28(sp)
PC + 14: addiu a0,a0,0
PC + 18: 1i a2,16
PC+ Ic: addiu v0,sp, 16

PC = Interrupt Vector Table
Save registers

Handle interrupt

Restore registers

PC + 20: move sl,al

PC + 24: lui al,Oxfffd
PC + 28: SW ra,40(sp)
PC + 2c: sw s3,36(sp)
PC + 30: sw s2,32(sp)
PC + 34: swcl $f21,48(sp)
PC + 38: swcl $£20,52(sp)

Interrupt

(e.g., network,
battery, timer,
failure, etc.)

(b) Example flow of instruction execution in the
presence of interrupts from modeled peripherals

IWP9 2006

29

Sunflower Simulator / HW EMulator

Communication

9

Failures

Computation

Battery Modeling

Physical phenomena

IWP9 2006

30

Computation

Modeling Computation

° Modeled ISA

Hitachi SH ISA, support for new ISAs being added

- Applications (e.g., SPEC CPU 2000) compiled with GCC 3.x toolchain, Hitachi/Renesas HEW
compiler, Microsoft VC for Hitachi SH, ...

- Should be able to compile apps in any source language that GCC or any of the compilers
support (C, C++, FORTRAN, Java, Chill, Ada)

e Microarchitecture

- Detailed simulation of SH3 family pipeline

e Processor peripherals and interrupt sources
- SH3’s UART, Timer Unit

- Added new peripherals: Network Interface, Sensors, Random Number Source, Logging,
Simulator Control Interface

IWP9 2006 31

Application’s View

Memory Map

Memmory Mapped Registers

l Stack

T Heap

Application

Monitor

Interrupt Vector Base

OXFFFFFFFO

OXFFFF0000

0x80FFFFF

0x8003000

0x8001000

0x8000600

0x8000000

Computation

e Peripherals and interrupt sources

- Interaction with modeled peripherals and simulation
control and is through memory-mapped registers

- Interrupt sources: network, device failures, battery
status, timer

o Typical application style:
- main()+interrupt handler

- E.g., received network frames handled in network
intr handler, periodically scheduled tasks triggered by
timer interrupts

- Rudimentary device drivers and interrupt handling
code is often reused

IWP9 2006 32

Modeling Physical Phenomena

Physical Phenomena

e Modeling both computation and the physical phenomena
that drive computation is important

e |If we’re modeling a sensor network, would like to model the
physics of signal propagation
- Attenuation of signals in space
Interference between signals

Location and motion of signal sources in space

IWP9 2006 33

Modeling Physical Phenomena

Physical Phenomena

« Example

- 2 light sources with Gaussian spread of intensity from peak
- The light sources move according to trajectories specified by a LUT

Example user-specified signal source attenuation Example user-specified signal source trajectories

% Source 1
LS X
© 2 C
c & Source 2
o0
N ol

Radial distance from signal location
Pib)

IWP9 2006 34

Modeling Physical Phenomena

Physical Phenomena

e Signal attenuation

- Attenuation with radial distance, x, specified by providing coefficients for

(Fxg+ Gxr + Hxs + Ixt)

S(AX™ + Bx" + Cx° + DxP + EK)

- Example, for Gaussian spread light source with peak intensity S, E=1, K=e, F = -0.5, q = 2,
all other coefficients are 0

e Signal trajectory

- Trajectory and speed specified as a list of way-points and sampling rate

- Notion of time in physical models is synchronized with ISA simulation, communication
modeling, battery models, etc.

IWP9 2006 35

Communication

Modeling
Communication

e Model

- Each processor can have multiple network interfaces (NICs) instantiated
- Within a simulation, multiple network segments are instantiated

- NICs are connected to network segments to create arbitrary topologies

Shared Corrwiication Link

Processing Device

|: Network interface
Point-to—point Communication Links

T

e Application’s view
- Code running over simulator sees NIC as a memory-mapped peripheral

- Interrupts generated for TX/RX and various errors

IWP9 2006 36

Communication

Modeling
Communication

o Network Segment (Defines properties of physical link)
- Bit rate

Frame size

- Number of simultaneous transmissions that can be accommodated
- Rate and distribution of intermittent failures
- Signal propagation properties, same model as described for phy. sources

- Minimum SNR before introducing bit errors

e Network Interface

- Transmit, receive and idle power consumption
- Number of TX and RX FIFO entries

IWP9 2006 37

Power Estimation

o 3 different methods for power estimation

Requires most effort, slower, not always practicable:

- Signal transition activity reported per cycle for pipeline latches, buses, register file,
cache ports, usage of FUs

- Requires capacitance values to obtain power estimates

Better tradeoff:

- Characterized instruction-level power model

- Requires empirical measurements on actual hardware

Simplest:
- Specify average active and sleep power consumption, e.g., from a device manufacturer’s
data sheet

IWP9 2006

Power Estimation

e Simulator includes an instruction-level power model for the
Hitachi SH7708

e Empirical measurements using SH7708 eval. board

- Measured average current draw for a fixed set of operand values, for each instruction in the
ISA (~160 instructions / different addressing modes)

- No inter-instruction effects

- Non-idempotent instructions like TRAP can’t be subjected to this method

IWP9 2006 39

Power Estimation

e Signal transition activity estimation
- Signal transitions as encoded/decoded instructions move through pipeline

Register file, program counter

Data and address buses

Cache read/write ports

No modeling of internals of functional units

e When is transition activity estimation useful ?
- Comparative studies of signal transition activity in the modeled structures

- If you have capacitance values; this may not be available until after floor-planning and
layout

IWP9 2006

40

Power Estimation

e QOther details

e Sleep mode

- Reduced power consumption when application executes a sleep instruction (until next
interrupt)

e Voltage and frequency scaling during simulation
- Under simulated application’s control via simulator control register

- Interactively via command prompt

- Independent voltage and frequency scaling or scale VDD and freq. in tandem for a
specified Vt and technology-dependent a

IWP9 2006

41

Battery Subsystem

“Battery”
Electrochemical Cell

DC-DC
Converter

Network interface power
consumption + Processor power
consumption

Battery Modeling

DC-DC Converter

LUT from data sheet

EFFICIENCY ws.

Electrochemical cell discharge profile
LOAD CURRENT ¢3.3VAA CIRCRIT

A typical example of CGR18650

AT D EE

Charge conditions: constant voltage/constant current,
4.2V, Max.910mA, 2 hours, 20°C
Discharge conditions: constant current, 3.0V end, 20°C

5.0

[l I A Y
e r

EFFICIENCY %1

|

1 260mA

ISmeA '

Voltage (V)

MAKIEES
f = 30kH:

ool am 11 ! B
LOALCURRENT () 2.3

Efficiency vs. current
for Maxim MAX1652

200 400 600 800 1000 1200 1400 1600
Capacity (mAh)

One or more devices can be attached to a battery system
Sampled current draw periodically supplied to battery subsystem
Current passed to a model for a DC-DC converter, then to model for electrochemical cell

Models based on discrete-time battery model from [L. Benini et al., TVLSI ‘01]

IWP9 2006 42

Modeling Failures

Failures

e Computation Failures

- Event upsets within microarchitecture or treat each processor as a unit that may fail en-
masse with some probability

- Intermittent failures with a specified rate and distribution for which processor is
temporarily inactive

- Correlated failures between processing elements and network segments

e Communication failures

- Also permit configuration of intermittent failures of network segments

- If a network is associated with a physical sighal model, induce bit errors when SNR drops
below a specified threshold

IWP9 2006 43

Computation Communication

Implementation

Failures

Battery Modeling
Physical phenomena

e Simulator core written in C, interactive command parser and built-in
assembler specified in Yacc

e Runs on *BSD, Linux, MacOS, Windows

» Console application or with GUI

e GUI and simulation parallelization implemented with the Inferno OS and
Limbo programming language

IWP9 2006 44

