Implementation of a Distributed Full-System Simulation Framework as a Filesystem Server

> Phillip Stanley-Marbell Carnegie Mellon University

Motivation

["An 0.9x1.2 Energy-Harvesting System with Custom Multi-Channel Communication Interface", *IEEE DATE'07*, Nice, France]

Context

- Investigating highly-integrated networks of compute/sensing/actuation systems
- We currently cannot afford (\$) to build systems with thousands of nodes
- Simulation permits the investigation of large scale systems
- Simulation is not a substitute for actual hardware
- Challenge: simulating large scale (thousand+ node) systems

Outline

- Motivation
- Simulation Framework Overview
- Distributed Simulation
- Multi-Platform Packaging
- Summary

P

Sunflower Full-System Simulator

- Simulation Engine Models:
 - Computation at instruction execution level, for two different ISAs
 - Communication at the MAC and PHY levels
 - Compute & network power dissipation includes instruction-level power models
 - Batteries and voltage regulators models for several batteries and regulators
 - Device and networking faults bit-level logic upsets and node / network failures
 - Physical phenomena external to hardware location in three-space, attenuation
- Example composition of a simulated system:

["Sunflower: Full-System Embedded Microarchitecture Evaluation", HiPEAC '07, Ghent, Belgium]

↩

Sunflower Full-System Simulator

- Simulation engine implemented in C
- Originally implemented as a standalone application on Unix
- Challenges
- Simulating large systems (thousands of nodes) can be tasking, even on a high-end workstation
- Especially so, when modeling all the aforementioned components

- Can split simulation across multiple workstations
- Nodes simulated on separate hosts may communicate : must handle that
- Must keep passage of time synchronous across portions of partitioned simulation

P

Outline

- Motivation
- Simulation Framework Overview
- Distributed Simulation
- Multi-Platform Packaging
- Summary

₽

Distributed Simulation

• Challenges

- An efficient / easy way to connect state of portions of sim across hosts
- A means of ensuring the state of simulation across hosts is consistent
- An interface to keep track of hosts, global simulation state, etc.

• Approach

- There are many ways you could do this...
- Chose to take advantage of ease of connecting systems with Inferno

• Implementation

- Simulation engine compiled as a library, linked against emu (chose not to use libstyx)
- All relevant state on each host exposed as a filesystem, via a device driver interface
- "Glue" application connects together name spaces, keeps engine state consistent

Simulation Engine Interface

- Interface to simulation engine is a device driver, devsf, #j
 - Dynamic filesystem interface w/ one line directory per simulated node (processor+batt, etc)
 - Exposes simulation engine state (e.g., simulated MAC-layer frames via netin, netout)

P

Simulation Glue Logic

GUI + simulation "glue"

• "Glue" application (implemented in Limbo)

- Engine filesystems from different simulation hosts mounted in name space of glue app
- Interconnects simulated networks on different hosts
- Implements facilities for synchronizing virtual time across portions of simulated system

P

Distributed Simulation

• Synchronization issues

- Simulation rates across hosts may vary, but global timebase must remain synchronized
- Well known issues, already investigated in the area of parallel discrete-event simulation
- Synchronization facilities
 - Time synchronization
 - Simulation rate synchronization

↩

GUI + Glue Logic Application

Outline

- Motivation
- Simulation Framework Overview
- Distributed Simulation
- Multi-Platform Packaging
- Summary

↓

Multi-Platform Packaging

- Goal Implementation transparency
 - A single executable binary, indistinguishable from a native app. on host platform
 - Should not require (explicit or automatic) installation of Inferno
- Implementation
 - All the necessary dis executables, fonts, etc. compiled into in-memory root filesystem
 - Simulation engine library & driver interface (#j)
 - Server mode or client mode, w/ GUI or server app. instead of emuinit.dis → sh.dis
 - Reads / writes from host filesystem like any other host application (via #U)
 - On most platforms, binary is ~2-5 MB; self-contained executable
- Alternative don't roll filesystem into emu binary image
 - Distribute emu + Inferno filesystem tree (acme-sac does this)
 - I currently think a single-executable approach is cleaner for our purposes

↩

Multi-Platform Packaging

Windows 2000

88 Sur	Sunflower Simulator																				
Sunfl	ower	Config	Simulate	Conne	ect	Tools	Help	active	splice* off	* on'	* eqtp (eq <mark>rp e</mark>	ar 👘		linu	X					
	Initialized random number generator			N										05	X						
	Sunflow	Sunflower 1.0-beta (build 03-30-20 Authored, 1989-2005, by phillip st		Sunfl	ower Config		Simulate	Connect	Tools	$\Theta \Theta \Theta$			🔀 sunflower								
	Authore			Junit	- Initia	lized rando	number genera	tor with seed	-1968393883	Sunflo	ower	Config	Simulate	Connect	Tools	Help	ac	tive splice* o	ff* on* eq	tp eqrp	eqr
	Authored, 1989-2005, by phillip si Public key fingerprint 0884 DEEE I This software is provided with AB: →>> > ymung (Host #0)		(burld 03-30-20) S, by phillip st. rint 0884 DE6E E rovided with ABS		Ower Conng Initialized rand New node created Sunflover 1.0-be Authored, 1999-22 Public key finge This software is		Simulate m number genera with node 10 0 05, by phillip print 0884 DEBE provided with A	Connect tor with seed 2006-09:35:07 stanley-marbe E1FS A201 02 BSOLUTELY NO 1	Tools -19663939883 -pstanley@quid 11, cpstanley@ 3C 2E98 7F9F F WARRANTY. Read	Sunnower Conng Simula newbatt ID=17, capacity_mah newbatt ID=18, capacity_mah newbatt ID=20, capacity_mah newbatt ID=20, capacity_mah newbatt ID=22, capacity_mah newbatt ID=23, capacity_mah newbatt ID=23, capacity_mah newbatt ID=24, capacity_mah new node created with node New node created with node Done loading [dam.sr]. New node created with node Done loading [dam.sr].		Simulate acity_mAh=1.000 acity_mAh=1.0	Connect 0000E-01 0000E-01 0000E-01 0000E-01 0000E-01 0000E-01 0000E-01	Tools	Help	n cp nic r f tri Thr	ID 000000024 Active = 0 702 602 1263 702 602 1763 702 602 1763 702 602 1763 702 602 1763 702 602 1763 703 1363 1263 704 00000024 Active = 0 705 000000 Tcyc = 2.50E-07 705 000000 Tcyc = 2.50E-07 704 000000 Tcyc = 2.50E-07 705 000000 Tcyc = 0.00E+00 704 0.00E+00 minstrs = 0.00E+00 705 1500 1500 704 0.00E+00 minstrs = 0.00E+00 704 0.00E+00 Minstr dur = 0 704 130 0.00E+00 Sim Rate = 0 704 701 0.00E+00 Sim Rate = 0 704 1000000 Tinettle = 0 R_active = 0.000000 705 100 Sim Rate = 0 704 0.004.0.0.0.0 sensor0 = 0.00E+00	7 0 0 0			
			nhillin stanlev-m.	•														(SHA-1.RCA)	(HA-1.RC4)	-1	
Auth	ored. 199	999-2004 hu n								······································							A	Mount Bind	(200 1)004)		
Publi	ic key fi software	ngerprint Os is provided	84 DEBE E1F6 A20 With ABSOLUTELY	Autho Publi This	Authored, 1999–2004, by phillip stanley-marbell Public key fingerprint 0884 DEBE E1F6 A201 023C This software is provided with ABSOLUTELY NO WA			-marbell, <ps 201 023C 2E98 LY NO WARRANT</ps 	stanley@ece.cmu 3 7F9F FD41 AB2 Y. Read LICEN!	01+	<pre>focus.local (Host #0) sf0 (Host #1) sf1 (Host #2) sf2 (Host #3) ► sf3 (Host #4)</pre>							Host 192,168.1	.103 attache	d.	
						Autho Publi This	ored, 1999–; ic key fing software i	2004, by erprint O s provide	ohillip stanley 884 DE6E E1F6 A 1 with ABSOLUTE	-marbell, <pst 201 023C 2E9B LY NO WARRANTY</pst 	anley@ece.c 7F9F FD41 A '. Read LICE	mu.edu> B2A 4587 NSE.txt									

- Distributed as a single executable, no installation reqd.
 - 2.5MB binary on MacOS, 5.2MB binary on Linux, 2.7MB .exe on Windows

 \mathbf{r}

Outline

- Motivation
- Simulation Framework Overview
- Distributed Simulation
- Multi-Platform Packaging
- Summary

↓

Summary

- Sunflower
 - A full-system simulator for networks of embedded systems
- Problem
 - Simulation of large networks (thousand+ nodes) is compute- and memory intensive
 - Simulation can be split at the level of individual nodes (with some added work)
- Distributed simulation
 - Simulation engine compiled as a Inferno emulator library
 - Device driver (**#j**) interface to simulation state
 - GUI+glue application interconnects simulated state across multiple simulation hosts
 - Integration into Inferno enables easy multi-platform packaging/GUI
- Sources, binaries, documentation
 - http://www.ece.cmu.edu/~pstanley/sunflower

 $\mathbf{\cdot}$

Hardware Emulation Environment – Sunflower Simulator

Evaluation metrics relevant to microarchitecture's performance

Hardware Emulation Environment – Sunflower Simulator

Using Real Network Traces

Example: Using Real Network Traces

Modeled 16-bit Microarchitecture (TI MSP430)

= Structures modeled at bit-level, enabling signal transition activity and SEU modeling

Modeled 32-bit Microarchitecture (Hitachi SH)

= Structures modeled at bit-level, enabling monitoring of signal transition activity and SEUs during simulation

Communication Interface Modeling

Creating Arbitrary Topologies

Rich Set of Stochastic Distribution Generators

• All built upon a 64-bit pseudo-random number generator with very large period [Nishimura]

Battery Subsystem Model

Distributed Simulation

IWP9 2006

Example Memory Map

Memory-Mapped Registers • •	PC + 0: addiu sp,sp,-56 PC + 4: sw s0,24(sp) PC + 8: move s0,a0 PC + c: lui a0,0x0 PC + 10: sw s1,28(sp) PC + 14: addiu a0,a0,0 PC + 18: li a2,16 PC + Ic: addiu v0,sp,16	Interrupt			
Main Memory	PC = Interrupt Vector Table Save registers Handle interrupt Restore registers	(e.g., network, battery, timer, failure, etc.)			
• • • Interrupt Vector Table	PC + 20: move s1,a1 PC + 24: lui a1,0xfff4 PC + 28: sw ra,40(sp) PC + 2c: sw s3,36(sp) PC + 30: sw s2,32(sp) PC + 34: swc1 \$f21,48(sp) PC + 38: swc1 \$f20,52(sp)				

- (a) Memory map of simulated processing elements.
- (b) Example flow of instruction execution in the presence of interrupts from modeled peripherals

Sunflower Simulator / HW EMulator

Modeling Computation

• Modeled ISA

- Hitachi SH ISA, support for new ISAs being added
- Applications (e.g., SPEC CPU 2000) compiled with GCC 3.x toolchain, Hitachi/Renesas HEW compiler, Microsoft VC for Hitachi SH, ...
- Should be able to compile apps in any source language that GCC or any of the compilers support (C, C++, FORTRAN, Java, Chill, Ada)
- Microarchitecture
 - Detailed simulation of SH3 family pipeline
- Processor peripherals and interrupt sources
 - SH3's UART, Timer Unit
 - Added new peripherals: Network Interface, Sensors, Random Number Source, Logging, Simulator Control Interface

Application's View

- Peripherals and interrupt sources
 - Interaction with modeled peripherals and simulation control and is through memory-mapped registers
 - Interrupt sources: network, device failures, battery status, timer
- Typical application style:
 - main()+interrupt handler
 - E.g., received network frames handled in network intr handler, periodically scheduled tasks triggered by timer interrupts
 - Rudimentary device drivers and interrupt handling code is often reused

Modeling Physical Phenomena

- Modeling both computation and the physical phenomena that drive computation is important
- If we're modeling a sensor network, would like to model the physics of signal propagation

IWP9 2006

- Attenuation of signals in space
- Interference between signals
- Location and motion of signal sources in space

Modeling Physical Phenomena

- Example
 - 2 light sources with Gaussian spread of intensity from peak
 - The light sources move according to trajectories specified by a LUT

Modeling Physical Phenomena

- Signal attenuation
 - Attenuation with radial distance, x, specified by providing coefficients for

 $S(Ax^{m} + Bx^{n} + Cx^{o} + Dx^{p} + EK^{(Fxq+Gxr + Hxs + Ixt)})$

- Example, for Gaussian spread light source with peak intensity S, E=1, K= e, F = -0.5, q = 2, all other coefficients are 0
- Signal trajectory
 - Trajectory and speed specified as a list of way-points and sampling rate
 - Notion of time in physical models is synchronized with ISA simulation, communication modeling, battery models, etc.

Modeling Communication

- Model
 - Each processor can have multiple **network interfaces** (NICs) instantiated
 - Within a simulation, multiple network segments are instantiated
 - NICs are connected to network segments to create arbitrary topologies

• Application's view

- Code running over simulator sees NIC as a memory-mapped peripheral
- Interrupts generated for TX/RX and various errors

Modeling Communication

- Network Segment (Defines properties of physical link)
 - Bit rate
 - Frame size
 - Number of simultaneous transmissions that can be accommodated
 - Rate and distribution of intermittent failures
 - Signal propagation properties, same model as described for phy. sources

IWP9 2006

- Minimum SNR before introducing bit errors
- Network Interface
 - Transmit, receive and idle power consumption
 - Number of TX and RX FIFO entries

- 3 different methods for power estimation
- Requires most effort, slower, not always practicable:
 - Signal transition activity reported per cycle for pipeline latches, buses, register file, cache ports, usage of FUs
 - Requires capacitance values to obtain power estimates
- Better tradeoff:
 - Characterized instruction-level power model
 - Requires empirical measurements on actual hardware
- Simplest:
 - Specify average active and sleep power consumption, e.g., from a device manufacturer's data sheet

- Simulator includes an instruction-level power model for the Hitachi SH7708
- Empirical measurements using SH7708 eval. board
 - Measured average current draw for a fixed set of operand values, for each instruction in the ISA (~160 instructions / different addressing modes)
 - No inter-instruction effects
 - Non-idempotent instructions like TRAP can't be subjected to this method

- Signal transition activity estimation
 - Signal transitions as encoded/decoded instructions move through pipeline
 - Register file, program counter
 - Data and address buses
 - Cache read/write ports
 - No modeling of internals of functional units
- When is transition activity estimation useful ?
 - Comparative studies of signal transition activity in the modeled structures
 - If you have capacitance values; this may not be available until after floor-planning and layout

- Other details
- Sleep mode
 - Reduced power consumption when application executes a sleep instruction (until next interrupt)
- Voltage and frequency scaling during simulation
 - Under simulated application's control via simulator control register
 - Interactively via command prompt
 - Independent voltage and frequency scaling or scale VDD and freq. in tandem for a specified Vt and technology-dependent α

Battery Subsystem

- One or more devices can be attached to a battery system
- Sampled current draw periodically supplied to battery subsystem
- Current passed to a model for a DC-DC converter, then to model for electrochemical cell
- Models based on discrete-time battery model from [L. Benini et al., TVLSI '01]

Backup Slides

Communication

Failures

Computation

Power Estimation

Modeling Failures

- Computation Failures
 - Event upsets within microarchitecture or treat each processor as a unit that may fail *enmasse* with some probability
 - Intermittent failures with a specified rate and distribution for which processor is temporarily inactive
 - Correlated failures between processing elements and network segments
- Communication failures
 - Also permit configuration of intermittent failures of network segments
 - If a network is associated with a physical signal model, induce bit errors when SNR drops below a specified threshold

Implementation

- Simulator core written in C, interactive command parser and built-in assembler specified in Yacc
- Runs on *BSD, Linux, MacOS, Windows
- Console application or with GUI
- GUI and simulation parallelization implemented with the Inferno OS and Limbo programming language