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Motivation

• Context
– Investigating highly-integrated networks of compute/sensing/actuation systems

– We currently cannot afford ($) to build systems with thousands of nodes

– Simulation permits the investigation of large scale systems 

– Simulation is not a substitute for actual hardware

• Challenge: simulating large scale (thousand+ node) systems
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[“An 0.9x1.2 Energy-Harvesting System 
with Custom Multi-Channel Communication 
Interface”, IEEE DATE’07, Nice, France]
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Sunflower Full-System Simulator
• Simulation Engine Models:

– Computation — at instruction execution level, for two different ISAs

– Communication — at the MAC and PHY levels

– Compute & network power dissipation — includes instruction-level power models

– Batteries and voltage regulators — models for several batteries and regulators

– Device and networking faults — bit-level logic upsets and node / network failures

– Physical phenomena external to hardware — location in three-space, attenuation

• Example composition of a simulated system:
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• Simulation engine implemented in C
– Originally implemented as a standalone application on Unix

• Challenges
– Simulating large systems (thousands of nodes) can be tasking, even on a high-end workstation

– Especially so, when modeling all the aforementioned components

– Can split simulation across multiple workstations

– Nodes simulated on separate hosts may communicate : must handle that

– Must keep passage of time synchronous across portions of partitioned simulation

Sunflower Full-System Simulator
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Distributed Simulation

• Challenges
– An efficient / easy way to connect state of portions of sim across hosts

– A means of ensuring the state of simulation across hosts is consistent

– An interface to keep track of hosts, global simulation state, etc.

• Approach
– There are many ways you could do this...

– Chose to take advantage of ease of connecting systems with Inferno

• Implementation
– Simulation engine compiled as a library, linked against emu (chose not to use libstyx)

– All relevant state on each host exposed as a filesystem, via a device driver interface

– “Glue” application connects together name spaces, keeps engine state consistent
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Simulation Engine Interface

• Interface to simulation engine is a device driver, devsf, #j
– Dynamic filesystem interface w/ one line directory per simulated node (processor+batt, etc)

– Exposes simulation engine state (e.g., simulated MAC-layer frames via netin, netout)
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Simulation Glue Logic

• “Glue” application (implemented in Limbo)
– Engine filesystems from different simulation hosts mounted in name space of glue app

– Interconnects simulated networks on different hosts

– Implements facilities for synchronizing virtual time across portions of simulated system
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Distributed Simulation

• Synchronization issues
– Simulation rates across hosts may vary, but global timebase must remain synchronized

– Well known issues, already investigated in the area of parallel discrete-event simulation

• Synchronization facilities
– Time synchronization

– Simulation rate synchronization
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GUI + Glue Logic Application
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Multi-Platform Packaging

• Goal — Implementation transparency
– A single executable binary, indistinguishable from a native app. on host platform

– Should not require (explicit or automatic) installation of Inferno

• Implementation
– All the necessary dis executables, fonts, etc. compiled into in-memory root filesystem

– Simulation engine library & driver interface (#j)

– Server mode or client mode, w/ GUI or server app. instead of emuinit.dis → sh.dis

– Reads / writes from host filesystem like any other host application (via #U)

– On most platforms, binary is ~2—5 MB;  self-contained executable

• Alternative — don’t roll filesystem into emu binary image
– Distribute emu + Inferno filesystem tree (acme-sac does this)

– I currently think a single-executable approach is cleaner for our purposes
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Multi-Platform Packaging

• Distributed as a single executable, no installation reqd.
– 2.5MB binary on MacOS, 5.2MB binary on Linux, 2.7MB .exe on Windows
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Summary

• Sunflower
– A full-system simulator for networks of embedded systems

• Problem
– Simulation of large networks (thousand+ nodes) is compute- and memory intensive

– Simulation can be split at the level of individual nodes (with some added work)

•  Distributed simulation
– Simulation engine compiled as a Inferno emulator library

– Device driver (#j) interface to simulation state

– GUI+glue application interconnects simulated state across multiple simulation hosts

– Integration into Inferno enables easy multi-platform packaging/GUI

• Sources, binaries, documentation
– http://www.ece.cmu.edu/~pstanley/sunflower
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Hardware Emulation Environment — 
Sunflower Simulator
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Sunflower Simulator

19

!"na%&g!(en*&+*,ic+&a+chitect1+e!
(im1%ati&n !3et4&+5

!6nte+7ace*

8&4e+!9*timati&n8&4e+!9*timati&n

:&%tage!;eg1%at&+!,&<e%

=atte+>!,&<e%

?ai%1+e!,&<e%ing
3et4&+5
,e<i1m!@

3et4&+5
,e<i1m!A

3et4&+5
,e<i1m!B

"na%&g!
*igna%!@

"na%&g!
*igna%!A

@

0

A

B

?ai%1+e!,&<e%ing

(igna%!8+&Dagati&n!
,&<e%
Eata!F+an*mi**i&n!
,&<e%

"na%&g!
*igna%!B G(igna%!*Datia%!

atten1ati&n!m&<e%

(igna%!timeH
Ia+>ing!amD%it1<e!



↩
IWP9 2006

Backup Slides

Using Real Network Traces

20

!AC layer trace 
collection /e0g0, 3ith 

Ethereal6

tracetool7 conversion o: 
!AC layer trace in 

lib<ca< :ormat
Simulation



↩
IWP9 2006

Backup Slides

Example: Using Real Network Traces
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Modeled 16-bit Microarchitecture (TI MSP430)
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Modeled 32-bit Microarchitecture (Hitachi SH)
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Communication Interface Modeling
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Battery Subsystem Model
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Distributed Simulation
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Sunflower Simulator / HW EMulator
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Modeling Computation

• Modeled ISA
– Hitachi SH ISA, support for new ISAs being added

– Applications (e.g., SPEC CPU 2000) compiled with GCC 3.x toolchain, Hitachi/Renesas HEW 
compiler, Microsoft VC for Hitachi SH, ...

– Should be able to compile apps in any source language that GCC or any of the compilers 
support (C, C++, FORTRAN, Java, Chill, Ada)

• Microarchitecture
– Detailed simulation of SH3 family pipeline

• Processor peripherals and interrupt sources
– SH3’s UART, Timer Unit

– Added new peripherals: Network Interface, Sensors, Random Number Source, Logging, 
Simulator Control Interface



↩
IWP9 2006

Backup Slides
32

Application’s View

• Peripherals and interrupt sources 
– Interaction with modeled peripherals and simulation 

control and is through memory-mapped registers

– Interrupt sources: network, device failures, battery 
status, timer

• Typical application style:
– main()+interrupt handler

– E.g., received network frames handled in network 
intr handler, periodically scheduled tasks triggered by 
timer interrupts

– Rudimentary device drivers and interrupt handling 
code is often reused

Application

0x8000000

0x8001000

0x80FFFFF

0x8000600

Stack
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Heap

0xFFFF0000

0xFFFFFFF0
Memmory Mapped Registers
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Monitor

Memory Map
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Modeling Physical Phenomena

• Modeling both computation and the physical phenomena 
that drive computation is important

• If we’re modeling a sensor network, would like to model the 
physics of signal propagation

– Attenuation of signals in space

– Interference between signals

– Location and motion of signal sources in space 
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Modeling Physical Phenomena

• Example
– 2 light sources with Gaussian spread of intensity from peak
– The light sources move according to trajectories specified by a LUT

Example user-specified signal source trajectories

Source 1

Source 2
x

Example user-specified signal source attenuation 
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Modeling Physical Phenomena

• Signal attenuation
– Attenuation with radial distance, x, specified by providing coefficients for 

                  S(Axm + Bxn + Cxo + Dxp + EK
(Fxq+ Gxr + Hxs + Ixt))

– Example, for Gaussian spread light source with peak intensity S, E=1, K= e, F = -0.5, q = 2, 
all other coefficients are 0

• Signal trajectory
– Trajectory and speed specified as a list of way-points and sampling rate

– Notion of time in physical models is synchronized with ISA simulation, communication 
modeling, battery models, etc.
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Modeling 
Communication

• Model
– Each processor can have multiple network interfaces (NICs) instantiated

– Within a simulation, multiple network segments are instantiated

– NICs are connected to network segments to create arbitrary topologies

• Application’s view
– Code running over simulator sees NIC as a memory-mapped peripheral

– Interrupts generated for TX/RX and various errors

Point⌧to⌧point Communication Links

Processing Device

Network interface

Shared Communication Link
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Modeling 
Communication

• Network Segment (Defines properties of physical link)
– Bit rate

– Frame size

– Number of simultaneous transmissions that can be accommodated

– Rate and distribution of intermittent failures

– Signal propagation properties, same model as described for phy. sources

– Minimum SNR before introducing bit errors

• Network Interface
– Transmit, receive and idle power consumption

– Number of TX and RX FIFO entries
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Power Estimation

• 3 different methods for power estimation

• Requires most effort, slower, not always practicable:
– Signal transition activity reported per cycle for pipeline latches, buses, register file, 

cache ports, usage of FUs

– Requires capacitance values to obtain power estimates 

• Better tradeoff:
– Characterized instruction-level power model

– Requires empirical measurements on actual hardware

• Simplest:
– Specify average active and sleep power consumption, e.g., from a device manufacturer’s 

data sheet
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Power Estimation

• Simulator includes an instruction-level power model for the 
Hitachi SH7708

• Empirical measurements using SH7708 eval. board
– Measured average current draw for a fixed set of operand values, for each instruction in the 

ISA (~160 instructions / different addressing modes)

– No inter-instruction effects

– Non-idempotent instructions like TRAP can’t be subjected to this method
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Power Estimation

• Signal transition activity estimation
– Signal transitions as encoded/decoded instructions move through pipeline

– Register file, program counter

– Data and address buses

– Cache read/write ports

– No modeling of internals of functional units

• When is transition activity estimation useful ?
– Comparative studies of signal transition activity in the modeled structures

– If you have capacitance values; this may not be available until after floor-planning and 
layout
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Power Estimation

• Other details 

• Sleep mode
– Reduced power consumption when application executes a sleep instruction (until next 

interrupt)

• Voltage and frequency scaling during simulation
– Under simulated application’s control via simulator control register

– Interactively via command prompt

– Independent voltage and frequency scaling or scale VDD and freq. in tandem for a 
specified Vt and technology-dependent α
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Battery Subsystem

• One or more devices can be attached to a battery system

• Sampled current draw  periodically supplied to battery subsystem

• Current passed to a model for a DC-DC converter, then to model for electrochemical cell

• Models based on discrete-time battery model from [L. Benini et al., TVLSI ‘01]

“Battery”

Electrochemical Cell

DC-DC 
Converter

Network interface power 
consumption + Processor power 
consumption

DC-DC Converter 
LUT from data sheet

Electrochemical cell discharge profile  

Efficiency vs. current 
for Maxim MAX1652 
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Modeling Failures

• Computation Failures
– Event upsets within microarchitecture or treat each processor as a unit that may fail en-

masse with some probability

– Intermittent failures with a specified rate and distribution for which processor is 
temporarily inactive

– Correlated failures between processing elements and network segments

• Communication failures
– Also permit configuration of intermittent failures of network segments

– If a network is associated with a physical signal model, induce bit errors when SNR drops 
below a specified threshold
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Implementation

• Simulator core written in C, interactive command parser and built-in 
assembler specified in Yacc

• Runs on *BSD, Linux, MacOS, Windows

• Console application or with GUI

• GUI and simulation parallelization implemented with the Inferno OS and 
Limbo programming language


