Building Distributed
Applications with Inferno
and Limbo

Phillip Stanley-Marbell

pstanley@ece.cmu.edu
http://www.ece.cmu.edu/~pstanley

Talk Outline

* Terminology, Overview and History

* Abstraction and Names: Resources as Names (files) in
Inferno

* The Limbo Programming Language
* Multi-platform applications

* |ldeas & Summary

Intel Research Pittsburgh Seminar

Terminology

e An operating system
e A programming language for developing applications under Inferno

e |nferno abstracts away the hardware with a virtual machine, the Dis VM

e Limbo programs are compiled to bytecode for execution on the Dis VM

e A research operating system, being actively developed at Bell Labs and elsewhere

e A direct ancestor of Inferno

Intel Research Pittsburgh Seminar

Inferno

¢ |ntel x86, PowerPC, SPARC, MIPS,ARM, more...
e Like any other traditional OS

e Runs over many modern operating systems (Windows, Linux, *BSD, Solaris, IRIX,
MacOS X) or as a browser plugin in |[E under Windows

¢ , TO

both users and applications
e Filesystem and other system services, applications, etc.

e The emulator
_ — (e.g., in Java Virtual
Machine)

Intel Research Pittsburgh Seminar

Inferno System Architecture

L:.-E D‘E
Limbo Threads £ Limbo Threads B
o] T
Dis Virtual Machine Dis Virtual Machine
Built-in Modules - s Built-in Modules =
Mount Device E*E Mount Device E
Tt
evice Drivers Inferno Kernel =0 Device Drivers
Host G System Call Interface E
el EaE ‘ Host OS Kemel S
(i.e., running directly over S
hardware)

(i.e., emulator)

Intel Research Pittsburgh Seminar

Available Software

e Text/SGML editors
¢ Web browser,VWWML browser, Mail Client
* Graphical debugger

e Games

* Clones of Unix tools (sed, , etc.)

e Other (not part of the distribution)

* Audio editor / sequencer / synthesis ()
e |mage manipulation tools

Intel Research Pittsburgh Seminar

Applications

?ILAEX
% ps | grep Charon

_ E o http: ffwiwow vitanuova, comfinfernofindex, html

209 209 michael
382 382 michael
%
_ﬂ | |
Newcol Kill Putall Dump Exit fapp o B
Mew Cut Paste Snarf Sort Zerox Delcol New Cut Paste Snarf Sort 7
| Jappl/emd/bind.b Del Snarf Limbo | Look | | /usr/michael/ Del Snarf G 1eVve |D|:Ir‘r‘|Ei“‘|‘t dClross
* gljeme/, architectures
flags := sys—>NMREPL; irm.b
arg-=init{args); _keyring/
while{{o := arg->opt() 1= 0) T/appl/ Del Snarf Get | Look'® as been variously describe
case o i |mer mkfile ddleware, a network operatng
A - charon/ mpeg/ m, and a development
flags = sys->MAFTER; cmd/ mux/ onment for embedded systems. It
b - _ arid/ spreeS of these and more.
i flags = sys—->MEBEFORE; Nibys SUC/
: -hmﬂtH' | fappl/cmd/ Del Snarf Get [y runs in hosted mode under
e ' D660srv.b different operating systems,
usagel: aﬂn-:lhdpasswurd " ding an environment suitable for
4 auplay.b : development of distributed
argy := arg->argvil; auth/ ms.
arg = nil; auxi/
| bind.b a Imfernn Arn fha ather Rasd e o
| fappl/emd/auth/ Del Snarf Get | Look | bit2gif b |
khangelogin.b logind.b broke.b snarf
countersianer.b mkfile bytes.b
createsignerkey.b passwd.b catbh
keyfs.b signer.b cat.dis
keysry.b verify.b cat.shl

Shell fusrf/mich Shell Jfusr/mich
ael ael

¢ Shell, Acme editor, Charon web browser

Log

Intel Research Pittsburgh Seminar

History

* Developed, circa 1995, by the Computing Science
Research Center at Bell Labs

Sean Dorward, Rob Pike, David Presotto, Dennis Ritchie, Howard Trickey, Phil Winterbottom

* Drew upon lessons learned building Plan 9 research OS

* Developed as a decidedly commercial product

e Developed by Bell Labs research, transferred to the “Inferno Business Unit” a semi-
autonomous spinoff, housed within Lucent (Murray Hill, NJ)

Intel Research Pittsburgh Seminar

History

* Inferno Business Unit attempted to market Inferno as
the ideal solution for developing “Screen Phones™

Y N
Philips Consumer Communications 1S2630 Screen Phone
Developed by Philips facility in Eatontown NJ,
Manufactured in Guadalajara Mexico

T S TR S g
.._._.____-..:__-l e L | .'_:_II o
e o)) M _i]

IR T . r
B b o b o .

L s

e Using Inferno for “screen phones” was not a
particularly inspired idea.

* No significant improvement of Inferno (as delivered by
research group) is performed before attempting to sell it

e Circa 1999, Inferno Business Unit folds.

Intel Research Pittsburgh Seminar

History

e 2000: Rights to Inferno sold to Vita Nuova Holdings,
York England

VN was co-founded by Charles Forsyth, who had been actively involved in Plan 9
and Inferno work, and wrote the Plan 9 PowerPC compiler

e Source code license reduced from $1,000,000/$300,000 to $100, more liberal
license

e 2003: Inferno, including source code to entire system,
made available under a dual licensing scheme, for free

Intel Research Pittsburgh Seminar

History

* Some commercial products that used inferno

e PathStar was a carrier-grade voice-over-IP platform

e Served multiple POTS phone lines (bottom of cabinet), converging both
voice traffic and data traffic, to be sent over a WAN, possibly to
another PathStar

e |nferno used for control / management / user interface

e Custom “microkernel”, LCOS, run on the Line Cards

e Original prototype designed and built primarily by Phil Winterbottom
and Ken Thompson

Intel Research Pittsburgh Seminar

Talk Outline

* Abstraction and Names: Resources as Names (files) in
Inferno

* The Limbo Programming Language
* Multi-platform applications

* |ldeas & Summary

Intel Research Pittsburgh Seminar

Resource abstraction

e Operating systems abstract away CPU, disk, network as system calls

e System call abstraction is unfortunately not easily scalable across, e.g., network
(well, there’s RPCs)

e Abstraction for bytes on disk (or elsewhere)
e Nothing inherently tying the concept of files to bytes on disk

e Except of course, the operating system / file server’s implementation

Intel Research Pittsburgh Seminar

Names

¢ Can think of

e Size
e Access permissions
e Other state (creation/modification/access time)

* These properties (e.g.,Unix Struct stat) are largely a historical vestige —

e There’s nothing inherently tying files (i.e., names) to bytes on disk

e Association with disk files just happens to be most common use

o : many of us regularly access
files on remote hosts, e.g., via AFS

Intel Research Pittsburgh Seminar

Resources as files

* Since files are so easy to deal with

Process control ? Network connections / access to network protocol stack ?
Graphics facilities ?

e Get rid of all system calls except those for acting on files (open, close, read,
write, stat, etc.) !

e This file/name abstraction is than system call interface

e Resources as files + remote access to files

e We could build interesting distributed systems, with resources (files, i.e., names)
spread across networks

Intel Research Pittsburgh Seminar

Inferno : Resources as files

* Builds on ideas developed in Plan 9

o (files) in a hierarchical

e Graphics
e Networking
* Process control

e Resources accessed by simple file operations (open, close, read, write, stat, etc.)

e System transforms file operations into messages in a simple protocol (“Styx”’) for
accessing remote names

* Implications
o
e Name space is “per process’, so different programs can have different views of
available resources
e Restrict access to resources by restricting access to portions of name space

Intel Research Pittsburgh Seminar

Resources as files (names)

...

e Networking - durainet
e Network protocol stack :

® Graphlcs - cd /dev/draw
e Access to Ic
primitives '

' tail -f new &
5 ‘e

cd 1
A (o

Intel Research Pittsburgh Seminar

Example . process control

e Connect to a remote machine and attach its name
space to the local one at

* Union remote machine’s into local
o will now list processes running on both machines, because it works entirely
through the name space:
1 1 abby release 74K Sh[$Sys] :
SN - S 1abby release 73K SimpleHTTPD[$Sys]

e Can now simultaneously debug/control processes running on both machines

Intel Research Pittsburgh Seminar

Questions to mull on

¢ Contrast the behavior of in Inferno to
in Unix

The utility does not work exclusively through
Debuggers like GDB do not debug processes exclusively through

and cannot be directed to list processes on a remote machine or debug a

process on a remote machine, even if they (somehow) have access to the
filesystem remotely

Can you mount and see the of a remote system, by, say, AFS ? NFS ?

Incidentally, in Unix was done by T.]. Killian, who was affiliated with the Plan 9

development group. See T. J. Killian, “Processes as Files”. In Proceedings of the 1984 Usenix
Summer Conference, pp. 203 - 207. Salt Lake City, UT.

Intel Research Pittsburgh Seminar

Access and Control via
Name Space

e Unix /dev/ : Accessing device drivers via filesystem
° created by mknod () system call,

o of driver serving device special file 1oct1()
e Example: Can write an archive to a tape drive by writing to /dev/rst0, but
need to perform an 10Ct1 () system call to write the end-of-tape mark

e Example: Can play audio by writing PCM encoded audio data directly to
/dev/audio, but can only change sample rate via 1oct1 ()

* Inferno: No special syscalls for fiddling with devices
e Eg.,/dev/audio for audio data, /dev/audioct] for parameter control

e /net/tcp/clone to allocate resources for a new TCP connection, /net/
tcp/n/ (an entire per-connection directory of “synthetic files”, allocated when [net/tcp/
clone is read) for controlling connection and sending data

Intel Research Pittsburgh Seminar

Accessing Files (Names)

* What happens when files (names) are accessed !
e Operations on a single name:

e Traversing hierarchies of names

Intel Research Pittsburgh Seminar

Accessing Name Space Entries:
The Mount Device, #M

Applications / Users

Intel Research Pittsburgh Seminar

Accessing Name Space Entries:
The Mount Device, #M

Applications / Users

|
Eventually end up as in- ' |
kernel / P ::, > |nferno Kernel / Emulator Core |

|

* System

Intel Research Pittsburgh Seminar

Accessing Name Space Entries:
The Mount Device, #M

Applications / Users Is name part of a remotely
'System Call Interface (open. read. etc.) : attached name SPGCE ?

(over

- — i ————————————— ; “network’)

Inferno Kernel Internal
Chan* structure

— —— e — e — — — — — — — — — — — — — —_—

| 'V |

Eventually end up as in-_ | 2555 |

/ P ::>Inferno Kernel / Emulator Core |

kernel .
* System

* If file being accessed is from an attached namespace,

Intel Research Pittsburgh Seminar

Converting Styx messages to
local subroutine calls

S t _____________ Received Styx

Inferno Kernel Internal
Chan* structure

— o — e — e — — — — — — — — — — — — —— ——y

Subroutine calls

¢ Mount driver

* Any entity that can speak the Styx protocol can take advantage

system resources and hardware (subject to permissions / auth)
e Makes distribution of resources in a network simple : one protocol, Styx

Intel Research Pittsburgh Seminar

S —— . messages
Mount Device ; , SEEEEEEEEE®E

T

of

Styx in a Nutshell

* |4 message types

e |nitiate connection (Attach)

e Traversing hierarchy (Clone, Walk)

e Access, creation, read, write, close, delete (Open, Create, Read, Write, Clunk, Remove)
e Retrieve/set properties (Stat, Wstat)

e Error (Error)

e |nterrupt operation (Flush)

e No-op (Nop)

* Easy to implement on, say, an 8-bit microcontroller

<X Messages

Real world example: Styx on Lego Rcx
Brick (Hitachi H8 microcontroller, 32K
RAM, 16K ROM)

Intel Research Pittsburgh Seminar ‘ 26

Talk Outline

* The Limbo Programming Language
* Multi-platform applications

* |ldeas & Summary

Intel Research Pittsburgh Seminar

Programming in Limbo

* Limbo is a concurrent programming language
e language level support for and inter-thread

e Channels based on ideas from Hoare’s Communicating Sequential Processes (CSP)

Declare a variable that is a channel of integers

sync := chan of 1int;

Create a new thread with a reference to this channel
spawn worker(sync);

Read from the channel. Will block until a

corresponding write 1s performed by the worker thread
V =<- SYNC;

* Some Limbo language features

o : compiler and VM cooperate to ensure this

]

o , but rather, employs a powerful module system
o (compile- and run-time type checking)

Intel Research Pittsburgh Seminar

Example:

* An extensible packet sniffer architecture

* Dynamically loads and unloads packet decoder modules
based on observed packet types

e All implementations of packet decoders conform to a given module type (module
interface definition)

e File name containing

(e.g., ICMP packet inside Ethernet frame) , and loaded if
implementation is present

e New packet decoders at different layers of protocol stack can be added
transparently, even while is already running

Intel Research Pittsburgh Seminar

Xsniff (1)

implement Xsniff;

include "sys.m";
include "draw.m";
include "arg.m";
include '"xsniff.m";

Xsniff Module Definition [
' DUMPBYTES : con 32;

Modules which will
be run from shell
must define

“Un1t” with this
verbose

sighature etherdump := O;
dumpbytes := DUMPBYTES;

init : fn(nil : ref Draw->Context, args : list of string);:

init(nil : ref Draw->Context, args : list of string)

{
n : int;
buf := array [Sys->ATOMICIO] of byte;

sys = load Sys Sys->PATH;
arg = load Arg Arg->PATH;

Intel Research Pittsburgh Seminar 30

Xsniff (2)

Read /net/ether0/clone
Get back, e.g., the string “7”

Open /net/ether0/7/data

Open /net/ether0/7/ct]

Write config. commands into
/net/ether0/7/ctl

Spawn new thread with ref

to descriptor open on
/net/ether0/7/data

Command line argument parsing. Omitted...

Open ethernet device 1nterface
tmpfd :=

Determine which of /net/ether0/nnn
n = sys->read(tmpfd, buf, Ten buf);

(nil, dirstr) := sys->tokenize(string buf[:n], " \t");

line := int (hd dirstr);

infd : Sys- >open(dev+sys->sprint (" /%d/data”, |ine),

sys->0RDWR) ;

sys->print("Sniffing on %s/%d...\n", dev, 1line);

tmpfd = sys->open(dev+sys->sprint("/%d/ctl", Tine),

sys->0RDWR) ;

Get all packet types (put interface in promisc.
sys->fprint(tmpfd, "connect -1");
sys->fprint(tmpfd, "promiscuous");

mode)

Intel Research Pittsburgh Seminar

31

reader(infd : ref Sys->FD, args : list of string)

Xsniff (3) .

ethptr : ref Ether;
fmtmod : XFmt;

ethptr = ref Ether(array [6] of byte, array [6] of byte,

array [Sys->ATOMICIO] of byte,0);
Read Ethernet frame from y Loy y

/net/ether0/7/data while (1)

Compute a module ethptr.pktlen = n - len ethptr.rcvifc;

implementation file name, ethptr.rcvifc = ethptr.datal[0:6];
based on Ethernet frame ethptr.dstifc = ethptr.data[6:12];

nextproto field

nextproto := "ether"+sys->sprint("%4.4X",
(int ethptr.data[l2] << 8) |
(1nt ethptr.datal[1l3]));

Try to load an

implementation from the 1f ((fmtmod == nil) || (fmtmod->ID != nextproto))
file name computed (e.g., {
will be ' fmtmod = load XFmt XFmt->BASEPATH +
, _nextproto + “.dis’; o ..
if if (fmtmod == nil) continue;

frame contained IP) }

Decode frame, possibly
passing frame to further
filters 1

return;

Intel Research Pittsburgh Seminar

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System

(Hoare, 1978)

(Pike, 1990)

\

(Winterbottom, 1992)

\

* Language-level “communication variables”, the channel
data type, is influenced by CSP, via Alef and Newsqueak

Intel Research Pittsburgh Seminar ‘ 33

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System
(Hoare, 1978) (Milner, Tofte, Harper, McQueen, 1990)

(Pike, 1990) (Wirth, 1979)

(Winterbottom, 1992) /

\

* Limbo’s module system is influenced by ML and Modula-2

Intel Research Pittsburgh Seminar

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System

(Naur, Backus et al., 958)
(Hoare, 1978) (Milner, Tofte, Harper, McQueen, 1990) l
(Ritchie, 1970)

(Pike, 1990) (Wirth, 1979)
3 (Wirth, 1970)

(Winterbottom, 1992) / l

\

e Syntax is similar to “Algol Family” of languages, most
popular of which is probably C

Intel Research Pittsburgh Seminar

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System

(Naur, Backus et al., 958)
(Hoare, 1978) (Milner, Tofte, Harper, McQueen, 1990) l
(Ritchie, 1970)

(Pike, 1990) (Wirth, 1979)
3 (Wirth, 1970)

(Winterbottom, 1992) / l

\

e Shares similarities in data types with CSP etc (channels),
ML (language level lists and operators), module types, C

Intel Research Pittsburgh Seminar ‘ 36

Talk Outline

* Multi-platform applications

* |ldeas & Summary

Intel Research Pittsburgh Seminar

Distributed Applications

* Representing resources as files + simple access to

remote name spaces = easy distribution of resources

e Abstraction of resources as files, coupled with use of Styx protocol provides a
platform-independent interface

e Abstraction of both HVV via Dis VM and OS via

emulator
e Complete hardware and system independence of applications. No if’s, no but’s

* Multi-platform tools and build environment
e |dentical tools for compiling the emulator and native kernel across platforms

e No need to get bogged down in details of, e.g., MSVC on Windows

Intel Research Pittsburgh Seminar

Distributed Applications

* Applications can be readily deployed on any host
platform Inferno emulator runs on

 Can combine emulator and Limbo applications into a

single binary image per platform
¢ No need to make user install Inferno

e Final binary contains emulator (Dis VM, runtime system), Limbo applications, root
filesystem (as a ramdisk), < IMB compressed for interesting apps

e Java .jar files and .jnlp — you still have to install Java runtime, >12MB compressed

* Doing the above is trivial using Inferno and Limbo

Intel Research Pittsburgh Seminar

Case Study

* An architectural simulator which models multiple
complete embedded systems

e Regularly used in cycle-accurate simulation of 50+ devices interconnected in
arbitrary topologies
e Desired to simulate 1000+ devices : distribute simulation across multiple hosts
e Make simulation engines available for multiple platforms
* To be implemented by | graduate student, in spare time

e Simulation framework is “infrastructure”, not the end-goal of student’s research

e Simulation of 1000’s of nodes makes it possible to model more realistic scenarios

Intel Research Pittsburgh Seminar

Case Study

e Simulation platform exploits MIMD' parallelism

* Graduate student exploits SSMB’ parallelism

e Simulation engine ported as a device driver (#) in Inferno Emulator
e User Interface for simulation core implemented in Limbo

e Generation of stand-alone executables for multiple platforms (Mac OS X, Linux,
OpenBSD,Windows,Windows IE plugin) with ~| man-hour of work

| Flynn classification for parallel processors: Multiple Instruction/Multiple Data (e.g. NOW)

2 Coined for the purpose of this talk: Single Stone Multiple Bird Parallelism

Intel Research Pittsburgh Seminar

Implementation

e Simulation engine implemented in ANSI C

e Models Hitachi SH3 processor, network interface, battery cell’s electrochemical
characteristics, DC-DC converters, communication network, node/link failures,
more... (details not discussed in this talk)

e Compiled as a library that emulator links against

e Device driver interface in Inferno emulator makes

simulation engine visible as a dynamic hierarchy of files
e <500 lines of C code for the dynamic filesystem interface

e Device driver calls upon facilities of simulation core library

Intel Research Pittsburgh Seminar

Dynamic Filesystem Interface

* Dynamic hierarchy, one
directory per simulated

/dev/myrmigki/

/et processor

/info e Files in each numbered directory provide

/netin access to node info / control

/netout

/0/ e Ctl:used to control global simulation
J/ct] parameters, create new nodes, etc.
/stderr
/stdin e 1nfo:read to obtain simulation-wide
/stdout output

Per-node control /info
and output 71/ e netin,netout :connected across
/et hosts to connect simulated networks
/stderr . .
/stdin * Complete simulation control
ﬁ.ﬁfcg”t via filesystem

Intel Research Pittsburgh Seminar ‘ 43

Gluing Together Multiple Engines

Simulated system w/ 100 nodes
(processor+battery, NIC) and network

rode 3 * Join multiple simulation

engines together

e Communication between nodes simulated
on different hosts glued together using the
netin and netout interfaces in

Simulation Hosts filesystem

L AN
#@ #@ e A Limbo thread sets up the shuttling of

node 6

node 10

data, (netin,netout)<->(netout,netin)

e User interfaces defines which virtual
simulated nodes are mapped to which real
simulation hosts

SimJI-qtion Host
| Control Glue e Simulation hosts are any platform that
and GUI . Inferno emulator runs on, or a dedicated

host running an Inferno kernel

HH

Intel Research Pittsburgh Seminar

Implementation: Driver Interface

* Advantages of name (file) interface to simulation engine

e Uniform platform-independent interface to each simulation engine
e Any entity that can speak Styx can interact with a simulation engine
e User interface can easily be attached to a local or remote engine

o All of this is inherently platform-independent

Intel Research Pittsburgh Seminar

Implementation — GUI
on Windows

//3774 release 1.0-B

Messages Topology

Initializing random number generator with seed —13424686720, ., Hew node created witl
Cache initialized with zero size
There are 57 commands and 16 aliases:

BATTALERTFRAC
BEATTETALUTHENTRIES
BEATTRF
BATTYEATTLUTHENTRIES
C

CACHECFF
CLOCKINTR
DB

oT

D UMPCACHE
[UMPPWR
DUMFTIME
EFAULTS
FLTTHRESH

L
MALLCCDEBUG
N

NETDEBUG
NETSEGEFILE
NETSEGFRILFROE
NEWERATT
NCDEFAILDURMAR
OFF

FDr

FFUN
PCWERTOTAL

Q

RATIO
RETRYALG
SETERSENCDEID
SETIFCOUL
SETQUANTUM
SETTIMERDELAY
SHOWFIFE

BATTSF
BATTIKOHIHAL
BATTSTATS
BATTVLOSTLUT
Ch
CRCHESTATS
CONT

ne

DUMPALL
UMPHEM
DUMPREGS
DYHINSTR

FF

HELF

LOAD

MR

HD

NETHEWSES
METSECDELETE
METSEGFAILFROBFN
HEWNODE
NODEF AT LFROB

RENUMBERNCDES
RUN

SETERTT
SETHODE
SETSCALEALFHA
SETNDD
SHOWTAGS

EATTETALUT
EATTHCODEATTACH
EATTVEBATTLUT
EATTVLOSTLUTHENTRIES
CACHEINIT

o

L

CF
CUMPEATTSTATS
CUMFFIPE
DUMPSYSREGS
EEARTTINTR
FILEZNETSEG

IGH

LCCSTATS

MMAF

NETCORREL
NETHODENMEWIFC
NETSEGFAILDURMAX
NETSEGNICATTACH
NI
NODEFAILFROEFN
FRUINFO

FF

FPOWERSTRATS

FWD

3
RESETCPU
SAYE
SETFREQ
SETPC
SETTRG
SHOWCLE
SIZEMEM

-

- L Remote Hosts :

-

9prn

Contact: p. stanley-marbell <pstanley@ece.cmu.edu> . i
. public key fingerprint: 0884 DEGE EL1F6 A201 023C 2E9B 7F9F FD41 AB2A 4587 License Copyl"lght

I UsersSINFERN™1“enu-MNt > I

ﬂStart”J &/ &G lAde JRE DI | & Inferno EMU (2) ” ffl Inferno LI 1247 pM

|J B Command Pra... I)Welcome to Mi...I B Command Pra... | i librregrmigki

Intel Research Pittsburgh Seminar

Implmentation — GUI
on Max OS X

. —
806 X/ inferno
di]
.
~ release 1.0-B
Messages Topology -
SWSCALL:Y SvS_exit
Simulated Clock Cypcles = %
#User Time elapsed = 93,257E72 seconds
Instruction Simulation Rate = BI7.801023 K Cyclesssecond
Estimated CPU-only Energy = %L%E
Ratio of activessleep cycles =1 ,000000

- -

Remote Hosts :

help

| Jconfirm

+
Contact: p. stanley-marbell <pstanley@ece.cmu.edu>

df
public key fingerprint: 0884 DEGE E1F6 A201 023C 2E9B 7F9F FD41 AB2A 4587

License Copyright

B TATTEMNa LINE
ing. drauw{ing,.r, ing, nil, ing,r. nink:
textboxrect = textboxrect.addpt{{0Q, font.,height));

lines = tl lines;

3

return nil:

Intel Research Pittsburgh Seminar

Talk Outline

* |ldeas & Summary

Intel Research Pittsburgh Seminar

ldeas

* Representing resources as files makes possible

uniformity in access across platforms
e Interfaces to programs as entries in name space

e Process creation and control via name space, access to network stack, etc.

* Entries in name space still however have structure
dating back to Multics

e Entries in name space do not have “types” in the sense of types in programming
languages

e File attributes (name, uid, gid, atime, mtime, ...) are certainly just an aggregate type
(struct stat in Unix or Dir in Inferno)

Intel Research Pittsburgh Seminar

ldeas

* What if you could do:

Channel variable x has type defined by an aggregate type, Complex
X := chan of Complex;

Make channel x visible in name space. Entry will have type Complex
chan2name x “/tmp/x”;

Define channel var with type extracted from “/tmp/x” and connected to it:
a := chan of name2type “/tmp/x”;

e Writes to channel a are now visible on channel X

e Channel variable a is connected to X through name space. /tmp/X could be on
a remote host...

e This is an underlying idea in the M language [NSC-2,2003]

e Also being implemented as an extension to the Limbo runtime for didactic
purposes in (A CMU StuCo class I'm teaching)

Intel Research Pittsburgh Seminar

Summary

* Inferno: Virtualizes both hardware and operating system
facilities

 Limbo: A concurrent programming language
e language level channels in the spirit of Hoare’s CSP

e Threads are cheap, go well with channels

* Inferno, Limbo and their development tools make it easy
to build cross-platform distributed applications

* A particularly attractive code base for systems research

e Source to entire system available at no cost under a “liberal” source license

e CMU StuCo 98-023 Concurrent and Distributed Programming with Inferno and Limbo

Intel Research Pittsburgh Seminar

For more information:

* An Inferno/Limbo Mailing List

e http://li1sts.gemusehaken.org/mailman/listinfo/inferno

* Public software repository

e http://www.gemusehaken.org/i1pwl/sourcecode

e Other resources

e Public Certificate Authority

e Public CPU/resource servers (You will need to obtain certificates from above to
use these.)

Intel Research Pittsburgh Seminar

Phillip Stanley-M: H‘hltl]

EWILEY

Inferno

|- OPERATING SYSTEMS/SYSTEMS PROGRAMMING -

Inferno Programming with Limbo is the first
complete developer's guide to programming
for the Inferno operating system. Developed
at Lucent's Bell Labs, Inferno enables cross
platform, portable, distributed application
development that is well suited for
networked applications on resource
constrained, embedded systems. Limbo is its
programming language

This book will provide you with an
introduction to Inferno, and everything you
nead to know about building applications
with Limbo.

The book focuses on the pragmatic aspects of
developing Inferno applications with the
Limbo language. it includes complete source
code for several application examples,
ranging from a text editor, file servers and
network servers, to graphical applications
such as games. Common programming pitfalls
are revealed and in-depth analysis of
complete sample applications are given

For further information, please visit:

hitp./ Mwans wileyeurope.com

WWILEY

wiley.com

amazoncom.

Inferno Programming with Limbo

Phillip Stanley-Marbell

e accessing Inferno system facilities from
Limbo programs

® building multi-threaded applications with
Limbo

» implementing user level file servers in
Limbo

& networking in Inferno and constructing
networked applications in Limbo

& graphical applications in Inferno

& augmenting Limbo applications with
modules written in the C programming
language

e cryptographic facilities provided by Inferno

» tools for verification of concurrent multi-
threaded programs, such as model checkers

» relevant manual pages and Limbo module

definitions

Phillip Stanley-Marbell is a Ph.D. student at
Carnegie Mellon University, and maintains the
InfernofLimbo FAQ. He has been an Inferno
user since its original release, and has worked
on two commercial products that used

Inferno.
[Z-\-EI\"- ~B4352-7
o 'TB04TO B4 3529

Better Together

Buy this book WI[h The Art of UNIX Programming by Eric 5. Raymond {(Author) today!

h.qu'xlnlu 1
- LT

-
-
e

Buy Together Today
@ Buy both now!

(Amazon is bundling it with TAOUP. Not shameless self-promotion if I’'m promoting someone else’s book too ? :)

Intel Research Pittsburgh Seminar

Backup slides

Connecting to remote systems
the utility

 Connect to remote system, attach (union) their
filesystem name space to local name space

* Manner in which union happens is determined by flags

e -b (MBEFORE flag in Limbo module version)
* —a (MAFTER flag in Limbo module version)
* —c (MCREATE in Limbo module version)

e Also, whether or not to authenticate connection, —A (Mount uses a previously
saved certificate in authentication, which must have been previously obtained from a

certificate authority)

Intel Research Pittsburgh Seminar

Language Data lypes

* Basic types

. — 32-bit, signed 2’s complement notation

. — 64-bit, signed

. — 8-bit, unsigned

o — 64-bit IEEE 754 long float

o — Sequence of 16-bit Unicode characters

e Structured Types

° — Array of basic or structured types

o , — Grouping of data and functions

o — List of basic or structured data types, list of list, etc.
e Tuples

Intel Research Pittsburgh Seminar

Modules

* Applications are structured as a collection of

e Component modules of an application are
and

e Each compiled program is a single module

e Any module can be loaded dynamically and used by another module
e Shell loads when instructed to, and “runs’ it

e There is no static linking

init(ctxt: ref Draw->Context, args: 1list of string)

ﬂ """ :

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello!\n");

Intel Research Pittsburgh Seminar

Hello World

implement HelloWorld; <«

Module Name

include “sys.m”; .
include “draw.m”: < Various Includes

— Module Type (interface) Definition

B _—mr R R R AR,
1

 HelloWorld: module

init: fn(ctxt: ref Draw->Context, args: list of string);

S init(ctxt: ref Draw->Context, args: list of string)
- q
i sys = load Sys Sys->PATH;

This 1s a comment
sys->print(’Hello!\n”);

* Module interface definitions often placed in separate files by convention
e Module definitions define a new “type”
* Compiled modules in file contains this type information
* |value of a statement must match this type

Intel Research Pittsburgh Seminar 58

Dynamic Loading of
Modules

* Module type information is statically fixed in caller
module, but the actual implementation loaded at run
time is not fixed, as long as it type-checks

------ -'; $Sys |
+{ Bufio
o) ~{Ev } o Readdir | module (the command shell)
loads the and other
o Filepat) modules at runtime. The
. — module loads other modules that
e it may need (e.g.,)
load operations load operation

(Al runtime) (At runtime)

Intel Research Pittsburgh Seminar

Channels

e Channels are communication paths between threads

* Declared as <any data type>

e Synchronous (blocking/rendezvous) communication
between threads

e Channel operations
* Send:

e Receive:

e Alternate (monitor multiple channels for the capability to send or receive)

Intel Research Pittsburgh Seminar

Example : Snooping on Styx

. (ipwl book, pg. 192) is a simple program that lets you
observe Styx messages/local procedure calls generated by
name space operations

; interloper
Tattach
Rattach

: ¢d /n/remote

; pwd
Tclone
Rclone
Tstat
Rstat
Tclunk
Rclunk

Intel Research Pittsburgh Seminar

