
Intel Research Pittsburgh Seminar

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

http://www.ece.cmu.edu/~pstanley

Building Distributed
Applications with Inferno

and Limbo

2Intel Research Pittsburgh Seminar

Talk Outline

• Terminology, Overview and History

• Abstraction and Names: Resources as Names (files) in
Inferno

• The Limbo Programming Language

• Multi-platform applications

• Ideas & Summary

3Intel Research Pittsburgh Seminar

• Inferno
• An operating system

• Limbo
• A programming language for developing applications under Inferno

• Dis
• Inferno abstracts away the hardware with a virtual machine, the Dis VM

• Limbo programs are compiled to bytecode for execution on the Dis VM

• Plan 9
• A research operating system, being actively developed at Bell Labs and elsewhere

• A direct ancestor of Inferno

Terminology

4Intel Research Pittsburgh Seminar

• Runs directly over bare hardware
• Intel x86, PowerPC, SPARC, MIPS, ARM, more...
• Like any other traditional OS

• Also available as an emulator
• Runs over many modern operating systems (Windows, Linux, *BSD, Solaris, IRIX,

MacOS X) or as a browser plugin in IE under Windows

• Emulator provides interface identical to native OS, to
both users and applications
• Filesystem and other system services, applications, etc.

• The emulator virtualizes the entire OS, including filesystem, network stack,
graphics subsystem — everything — not just code execution (e.g., in Java Virtual
Machine)

Inferno

5Intel Research Pittsburgh Seminar

Native (i.e., running directly over
hardware)

Hosted (i.e., emulator)

Inferno System Architecture

Built-in Modules

Mount Device

Built-in Modules

Mount Device

6Intel Research Pittsburgh Seminar

• Text/SGML editors

• Web browser, WML browser, Mail Client

• Graphical debugger

• Games

• “Grid computing” tools

• Clones of Unix tools (sed, banner, etc.)

• Other (not part of the distribution)
• Audio editor / sequencer / synthesis (edisong)
• Image manipulation tools

Available Software

7Intel Research Pittsburgh Seminar

Applications

• Shell, Acme editor, Charon web browser

8Intel Research Pittsburgh Seminar

History
• Developed, circa 1995, by the Computing Science

Research Center at Bell Labs
Sean Dorward, Rob Pike, David Presotto, Dennis Ritchie, Howard Trickey, Phil Winterbottom

• Drew upon lessons learned building Plan 9 research OS

• Developed as a decidedly commercial product
• Developed by Bell Labs research, transferred to the “Inferno Business Unit” a semi-

autonomous spinoff, housed within Lucent (Murray Hill, NJ)

9Intel Research Pittsburgh Seminar

History
• Inferno Business Unit attempted to market Inferno as

the ideal solution for developing “Screen Phones”

• Using Inferno for “screen phones” was not a
particularly inspired idea.

• No significant improvement of Inferno (as delivered by
research group) is performed before attempting to sell it
• Circa 1999, Inferno Business Unit folds.

Philips Consumer Communications IS2630 Screen Phone
Developed by Philips facility in Eatontown NJ,

Manufactured in Guadalajara Mexico

10Intel Research Pittsburgh Seminar

History

• 2000: Rights to Inferno sold to Vita Nuova Holdings,
York England

• VN was co-founded by Charles Forsyth, who had been actively involved in Plan 9
and Inferno work, and wrote the Plan 9 PowerPC compiler

• Source code license reduced from $1,000,000/$300,000 to $100, more liberal
license

• 2003: Inferno, including source code to entire system,
made available under a dual licensing scheme, for free

11Intel Research Pittsburgh Seminar

History

• Some commercial products that used inferno

• Lucent Managed Firewall

• Lucent PathStar Access Server

• PathStar was a carrier-grade voice-over-IP platform

• Served multiple POTS phone lines (bottom of cabinet), converging both
voice traffic and data traffic, to be sent over a WAN, possibly to
another PathStar

• Inferno used for control / management / user interface

• Custom “microkernel”, LCOS, run on the Line Cards

• Original prototype designed and built primarily by Phil Winterbottom
and Ken Thompson

• Philips Consumer Communications IS2630 Screen phone

12Intel Research Pittsburgh Seminar

Talk Outline

• Terminology, Overview and History

• Abstraction and Names: Resources as Names (files) in
Inferno

• The Limbo Programming Language

• Multi-platform applications

• Ideas & Summary

13Intel Research Pittsburgh Seminar

• Resource abstraction is a good thing
• Operating systems abstract away CPU, disk, network as system calls

• System call abstraction is unfortunately not easily scalable across, e.g., network
(well, there’s RPCs)

• Files are one abstraction
• Abstraction for bytes on disk (or elsewhere)

• Nothing inherently tying the concept of files to bytes on disk

• Except of course, the operating system / file server’s implementation

Resource abstraction

14Intel Research Pittsburgh Seminar

• Can think of files as names with special properties
• Size

• Access permissions

• Other state (creation/modification/access time)

• These properties (e.g., Unix struct stat) are largely a historical vestige —
we could imagine files with more sophisticated ‘types’

• Files are just an abstraction
• There’s nothing inherently tying files (i.e., names) to bytes on disk

• Association with disk files just happens to be most common use

• This abstraction is however very nice to deal with : many of us regularly access
files on remote hosts, e.g., via AFS

Names

15Intel Research Pittsburgh Seminar

• Since files are so easy to deal with
• Can we represent all resources as names (files) in a name space ?

Process control ? Network connections / access to network protocol stack ?
Graphics facilities ?

• Get rid of all system calls except those for acting on files (open, close, read,
write, stat, etc.) ?

• This file/name abstraction is not much more expensive than system call interface

• Resources as files + remote access to files
• We could build interesting distributed systems, with resources (files, i.e., names)

spread across networks

Resources as files

16Intel Research Pittsburgh Seminar

• Builds on ideas developed in Plan 9
• Most system resources represented as names (files) in a hierarchical name space

• Names provide abstraction for resources
• Graphics
• Networking
• Process control

• Resources accessed by simple file operations (open, close, read, write, stat, etc.)

• System transforms file operations into messages in a simple protocol (“Styx”) for
accessing remote names

• Implications
• Access local and remote resources with the same ease as local/remote files
• Name space is “per process”, so different programs can have different views of

available resources
• Restrict access to resources by restricting access to portions of name space

Inferno : Resources as files

17Intel Research Pittsburgh Seminar

• Networking
• Network protocol stack represented

by a hierarchy of names

• Graphics
• Access to drawing and image

compositing primitives through a
hierarchy of names

Resources as files (names)
; du -a /net
0 /net/tcp/0/ctl
0 /net/tcp/0/data
0 /net/tcp/0/listen
0 /net/tcp/0/local
0 /net/tcp/0/remote
0 /net/tcp/0/status
0 /net/tcp/0
0 /net/tcp/clone
0 /net/tcp/
0 /net/arp
0 /net/iproute
...

; cd /dev/draw
; lc
new
; tail -f new &
1 0 3 0 0 640 480
; lc
1/ new
; cd 1
; lc
ctl data refresh

18Intel Research Pittsburgh Seminar

• Connect to a remote machine and attach its name
space to the local one at /n/remote:

• Union remote machine’s /prog into local /prog:

• ps will now list processes running on both machines, because it works entirely
through the /prog name space:

• Can now simultaneously debug/control processes running on both machines

Example /prog : process control

; mount net!haus.gemusehaken.org /n/remote

; bind -a /n/remote/prog /prog

; ps
 1 1 pip release 74K Sh[$Sys]
 7 7 pip release 9K Server[$Sys]
 8 1 pip alt 9K Cs
 10 7 pip release 9K Server[$Sys]
 11 7 pip release 9K Server[$Sys]
 15 1 pip ready 73K Ps[$Sys]
 1 1 abby release 74K Sh[$Sys]
 8 1 abby release 73K SimpleHTTPD[$Sys]

19Intel Research Pittsburgh Seminar

Questions to mull on

• Contrast the behavior of /prog in Inferno to /proc
in Unix
• The ps utility does not work exclusively through /proc

• Debuggers like GDB do not debug processes exclusively through /proc

• ps and gdb cannot be directed to list processes on a remote machine or debug a
process on a remote machine, even if they (somehow) have access to the /proc
filesystem remotely

• Can you mount and see the /proc of a remote system, by, say, AFS ? NFS ?

Incidentally, /proc in Unix was done by T. J. Killian, who was affiliated with the Plan 9
development group. See T. J. Killian, “Processes as Files”. In Proceedings of the 1984 Usenix
Summer Conference, pp. 203 - 207. Salt Lake City, UT.

20Intel Research Pittsburgh Seminar

• Unix /dev/ : Accessing device drivers via filesystem
• Device special files created by mknod() system call, linked to in-kernel device drivers

• Properties of driver serving device special file manipulated by ioctl() syscall
• Example: Can write an archive to a tape drive by writing to /dev/rst0, but

need to perform an ioctl() system call to write the end-of-tape mark

• Example: Can play audio by writing PCM encoded audio data directly to
/dev/audio, but can only change sample rate via ioctl()

• Inferno: No special syscalls for fiddling with devices
• E.g., /dev/audio for audio data, /dev/audioctl for parameter control

• /net/tcp/clone to allocate resources for a new TCP connection, /net/
tcp/n/ (an entire per-connection directory of “synthetic files”, allocated when /net/tcp/
clone is read) for controlling connection and sending data

Access and Control via
Name Space

21Intel Research Pittsburgh Seminar

• What happens when files (names) are accessed ?
• Operations on a single name: open, read, write

• Traversing hierarchies of names

Accessing Files (Names)

22Intel Research Pittsburgh Seminar

Accessing Name Space Entries:
The Mount Device, #M

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core

Applications / Users

23Intel Research Pittsburgh Seminar

• System delivers file operations to appropriate local device driver via
subroutine calls

Accessing Name Space Entries:
The Mount Device, #M

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Eventually end up as in-
kernel subroutine calls to
appropriate device driver

Applications / Users

24Intel Research Pittsburgh Seminar

• System delivers file operations to appropriate local device driver via
subroutine calls

• If file being accessed is from an attached namespace, deliver styx
messages to remote machine’s mount driver

Accessing Name Space Entries:
The Mount Device, #M

Inferno Kernel Internal
Chan* structure

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Eventually end up as in-
kernel subroutine calls to
appropriate device driver

Is name part of a remotely
attached name space ?

Send Styx messages (over
“network”)

Applications / Users

25Intel Research Pittsburgh Seminar

• Mount driver converts Styx messages coming in over the
network into calls to local device drivers

• Any entity that can speak the Styx protocol can take advantage of
system resources and hardware (subject to permissions / auth)
• Makes distribution of resources in a network simple : one protocol, Styx

Converting Styx messages to
local subroutine calls

Inferno Kernel Internal
Chan* structure

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Subroutine calls

Received Styx
messages

Applications / Users

26Intel Research Pittsburgh Seminar

• 14 message types
• Initiate connection (Attach)
• Traversing hierarchy (Clone, Walk)
• Access, creation, read, write, close, delete (Open, Create, Read, Write, Clunk, Remove)
• Retrieve/set properties (Stat, Wstat)
• Error (Error)
• Interrupt operation (Flush)
• No-op (Nop)

• Easy to implement on, say, an 8-bit microcontroller

Styx in a Nutshell

Styx

Hardware R
S-

23
2

Styx Messages

This device can now access network
protocol stack, process control, display

device etc. of the connected workstation

Real world example: Styx on Lego Rcx
Brick (Hitachi H8 microcontroller, 32K

RAM, 16K ROM)

27Intel Research Pittsburgh Seminar

Talk Outline

• Terminology, Overview and History

• Abstraction and Names: Resources as Names (files) in
Inferno

• The Limbo Programming Language

• Multi-platform applications

• Ideas & Summary

28Intel Research Pittsburgh Seminar

• Limbo is a concurrent programming language
• Language level support for thread creation and inter-thread communication over

typed channels

• Channels based on ideas from Hoare’s Communicating Sequential Processes (CSP)

Declare a variable that is a channel of integers
sync := chan of int;
Create a new thread with a reference to this channel
spawn worker(sync);
Read from the channel. Will block until a
corresponding write is performed by the worker thread
v =<- sync;

• Some Limbo language features
• Safe : compiler and VM cooperate to ensure this
• Garbage collected
• Not O-O, but rather, employs a powerful module system
• Strongly typed (compile- and run-time type checking)

Programming in Limbo

29Intel Research Pittsburgh Seminar

• An extensible packet sniffer architecture

• Dynamically loads and unloads packet decoder modules
based on observed packet types

• All implementations of packet decoders conform to a given module type (module
interface definition)

• File name containing appropriate decoder module is “computed” dynamically
from packet type (e.g., ICMP packet inside Ethernet frame) , and loaded if
implementation is present

• New packet decoders at different layers of protocol stack can be added
transparently, even while Xsniff is already running

Example: Xsniff

30Intel Research Pittsburgh Seminar

Xsniff (1)

Xsniff Module Definition

implement Xsniff;

include "sys.m";
include "draw.m";
include "arg.m";
include "xsniff.m";

Xsniff : module
{

DUMPBYTES : con 32;

init : fn(nil : ref Draw->Context, args : list of string);
};

sys : Sys;
arg : Arg;
verbose := 0;
etherdump := 0;
dumpbytes := DUMPBYTES;

init(nil : ref Draw->Context, args : list of string)
{

n : int;
buf := array [Sys->ATOMICIO] of byte;

sys = load Sys Sys->PATH;
arg = load Arg Arg->PATH;

Modules which will
be run from shell

must define
“init” with this

signature

31Intel Research Pittsburgh Seminar

Xsniff (2)
dev := "/net/ether0";
arg->init(args);

 # Command line argument parsing. Omitted...

Open ethernet device interface
tmpfd := sys->open(dev+"/clone", sys->OREAD);

Determine which of /net/ether0/nnn
n = sys->read(tmpfd, buf, len buf);
(nil, dirstr) := sys->tokenize(string buf[:n], " \t");

line := int (hd dirstr);
infd := sys->open(dev+sys->sprint("/%d/data", line),

 sys->ORDWR);

sys->print("Sniffing on %s/%d...\n", dev, line);
tmpfd = sys->open(dev+sys->sprint("/%d/ctl", line),

 sys->ORDWR);

Get all packet types (put interface in promisc. mode)
sys->fprint(tmpfd, "connect -1");
sys->fprint(tmpfd, "promiscuous");

Spawn new thread w/ ref to opened ethernet device
spawn reader(infd, args);

}

/net/ether0/clone

/net/ether0/7/data

Get back, e.g., the string “7”
Read

Open

Open /net/ether0/7/ctl

Write config. commands into
/net/ether0/7/ctl

Spawn new thread with ref
to descriptor open on
/net/ether0/7/data

32Intel Research Pittsburgh Seminar

Xsniff (3)
reader(infd : ref Sys->FD, args : list of string)
{

n : int;
ethptr : ref Ether;
fmtmod : XFmt;

ethptr = ref Ether(array [6] of byte, array [6] of byte,
 array [Sys->ATOMICIO] of byte,0);

while (1)
{
 n = sys->read(infd, ethptr.data, len ethptr.data);

 ethptr.pktlen = n - len ethptr.rcvifc;
 ethptr.rcvifc = ethptr.data[0:6];
 ethptr.dstifc = ethptr.data[6:12];

 nextproto := "ether"+sys->sprint("%4.4X",
 (int ethptr.data[12] << 8) |

 (int ethptr.data[13]));

 if ((fmtmod == nil) || (fmtmod->ID != nextproto))
 {
 fmtmod = load XFmt XFmt->BASEPATH +
 nextproto + ".dis";
 if (fmtmod == nil) continue;
 }

 (err, nil) := fmtmod->fmt(ethptr.data[14:], args);
}

return;
}

Compute a module
implementation file name,
based on Ethernet frame

nextproto field

Try to load an
implementation from the
file name computed (e.g.,

will be
ether0800.dis if
frame contained IP)

Decode frame, possibly
passing frame to further

filters

Read Ethernet frame from
/net/ether0/7/data

33Intel Research Pittsburgh Seminar

Limbo Language
Genealogy (abridged)

• Language-level “communication variables”, the channel
data type, is influenced by CSP, via Alef and Newsqueak

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

34Intel Research Pittsburgh Seminar

Limbo Language
Genealogy (abridged)

• Limbo’s module system is influenced by ML and Modula-2

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

ML
(Milner, Tofte, Harper, McQueen, 1990)

Modula-2
(Wirth, 1979)

Limbo

35Intel Research Pittsburgh Seminar

Limbo Language
Genealogy (abridged)

• Syntax is similar to “Algol Family” of languages, most
popular of which is probably C

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

ML
(Milner, Tofte, Harper, McQueen, 1990)

Modula-2
(Wirth, 1979)

Limbo

Pascal(Wirth, 1970)

Algol(Naur, Backus et al., 1958)

Limbo

C (Ritchie, 1970)

36Intel Research Pittsburgh Seminar

Limbo Language
Genealogy (abridged)

• Shares similarities in data types with CSP etc (channels),
ML (language level lists and operators), module types, C

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

ML
(Milner, Tofte, Harper, McQueen, 1990)

Modula-2
(Wirth, 1979)

Limbo

Pascal(Wirth, 1970)

Algol(Naur, Backus et al., 1958)

Limbo

C (Ritchie, 1970)

Limbo

37Intel Research Pittsburgh Seminar

Talk Outline

• Terminology, Overview and History

• Abstraction and Names: Resources as Names (files) in
Inferno

• The Limbo Programming Language

• Multi-platform applications

• Ideas & Summary

38Intel Research Pittsburgh Seminar

Distributed Applications

• Representing resources as files + simple access to
remote name spaces = easy distribution of resources
• Abstraction of resources as files, coupled with use of Styx protocol provides a

platform-independent interface

• Abstraction of both HW via Dis VM and OS via
emulator
• Complete hardware and system independence of applications. No if’s, no but’s

• Not just a virtual machine : complete virtualized operating system environment

• Multi-platform tools and build environment
• Identical tools for compiling the emulator and native kernel across platforms

• No need to get bogged down in details of, e.g., MSVC on Windows

39Intel Research Pittsburgh Seminar

Distributed Applications

• Applications can be readily deployed on any host
platform Inferno emulator runs on

• Can combine emulator and Limbo applications into a
single binary image per platform
• No need to make user install Inferno

• Final binary contains emulator (Dis VM, runtime system), Limbo applications, root
filesystem (as a ramdisk), < 1MB compressed for interesting apps

• Java .jar files and .jnlp — you still have to install Java runtime, >12MB compressed

• Doing the above is trivial using Inferno and Limbo
• The point is not just that you can do it, but rather that you can do it very easily

40Intel Research Pittsburgh Seminar

Case Study

• An architectural simulator which models multiple
complete embedded systems
• Regularly used in cycle-accurate simulation of 50+ devices interconnected in

arbitrary topologies

• Desired to simulate 1000+ devices : distribute simulation across multiple hosts

• Make simulation engines available for multiple platforms

• To be implemented by 1 graduate student, in spare time
• Simulation framework is “infrastructure”, not the end-goal of student’s research

• Simulation of 1000’s of nodes makes it possible to model more realistic scenarios

41Intel Research Pittsburgh Seminar

Case Study

• Simulation platform exploits MIMD parallelism

• Graduate student exploits SSMB parallelism

• Simulation engine ported as a device driver (#μ) in Inferno Emulator

• User Interface for simulation core implemented in Limbo

• Generation of stand-alone executables for multiple platforms (Mac OS X, Linux,
OpenBSD, Windows, Windows IE plugin) with ~1 man-hour of work

1

2

1 Flynn classification for parallel processors: Multiple Instruction/Multiple Data (e.g. NOW)
2 Coined for the purpose of this talk: Single Stone Multiple Bird Parallelism

42Intel Research Pittsburgh Seminar

Implementation

• Simulation engine implemented in ANSI C
• Models Hitachi SH3 processor, network interface, battery cell’s electrochemical

characteristics, DC-DC converters, communication network, node/link failures,
more... (details not discussed in this talk)

• Compiled as a library that emulator links against

• Device driver interface in Inferno emulator makes
simulation engine visible as a dynamic hierarchy of files
• <500 lines of C code for the dynamic filesystem interface

• Device driver calls upon facilities of simulation core library

• Driver is shielded from all arch-specific details by Inferno emulator implementation

43Intel Research Pittsburgh Seminar

Dynamic Filesystem Interface
• Dynamic hierarchy, one

directory per simulated
processor
• Files in each numbered directory provide

access to node info / control

• ctl: used to control global simulation
parameters, create new nodes, etc.

• info: read to obtain simulation-wide
output

• netin, netout : connected across
hosts to connect simulated networks

• Complete simulation control
via filesystem
• Make this interface visible over network...

/dev/myrmigki/

/ctl

/0/
/ctl

/stdout

/stderr
/stdin

/info

/1/

/ctl

/netin
/netout

/stdout

/stderr
/stdin

...

/info

/info

Per-node control
and output{

44Intel Research Pittsburgh Seminar

Gluing Together Multiple Engines

• Join multiple simulation
engines together
• Communication between nodes simulated

on different hosts glued together using the
netin and netout interfaces in
filesystem

• A Limbo thread sets up the shuttling of
data, (netin,netout)<->(netout,netin)

• User interfaces defines which virtual
simulated nodes are mapped to which real
simulation hosts

• Simulation hosts are any platform that
Inferno emulator runs on, or a dedicated
host running an Inferno kernel

X

#μ

#μ #μ#μ#μ

node 0 node 1 node 2 node 3

node 4 node 5 node 6 node 7

node 8 node 9 node 10 node 11

node 12 node 99…

Simulated system w/ 100 nodes
(processor+battery, NIC) and network

Simulation Hosts

Simulation Host
/ Control Glue
and GUI

45Intel Research Pittsburgh Seminar

Implementation: Driver Interface

• Advantages of name (file) interface to simulation engine

• Uniform platform-independent interface to each simulation engine

• Any entity that can speak Styx can interact with a simulation engine

• User interface can easily be attached to a local or remote engine

• All of this is inherently platform-independent

46Intel Research Pittsburgh Seminar

Implementation — GUI
on Windows

47Intel Research Pittsburgh Seminar

Implmentation — GUI
on Max OS X

48Intel Research Pittsburgh Seminar

Talk Outline

• Terminology, Overview and History

• Abstraction and Names: Resources as Names (files) in
Inferno

• The Limbo Programming Language

• Multi-platform applications

• Ideas & Summary

49Intel Research Pittsburgh Seminar

Ideas
• Representing resources as files makes possible

uniformity in access across platforms
• Interfaces to programs as entries in name space

• Process creation and control via name space, access to network stack, etc.

• Entries in name space still however have structure
dating back to Multics
• Entries in name space do not have “types” in the sense of types in programming

languages

• File attributes (name, uid, gid, atime, mtime, ...) are certainly just an aggregate type
(struct stat in Unix or Dir in Inferno)

• Could you make data structures within programs visible in name space and tie
together programs across the network ?

50Intel Research Pittsburgh Seminar

Ideas

• What if you could do:

Channel variable x has type defined by an aggregate type, Complex
x := chan of Complex;
Make channel x visible in name space. Entry will have type Complex
chan2name x “/tmp/x”;
...
Define channel var with type extracted from “/tmp/x” and connected to it:
a := chan of name2type “/tmp/x”;

• Writes to channel a are now visible on channel x

• Channel variable a is connected to x through name space. /tmp/x could be on
a remote host...

• This is an underlying idea in the M language [NSC-2, 2003]

• Also being implemented as an extension to the Limbo runtime for didactic
purposes in 98-023 (A CMU StuCo class I’m teaching)

51Intel Research Pittsburgh Seminar

Summary

• Inferno: Virtualizes both hardware and operating system
facilities

• Limbo: A concurrent programming language
• Language level channels in the spirit of Hoare’s CSP

• Threads are cheap, go well with channels

• Inferno, Limbo and their development tools make it easy
to build cross-platform distributed applications
• Not so much what they make possible, but rather the ease with which they make it so

• A particularly attractive code base for systems research
• Source to entire system available at no cost under a “liberal” source license

• CMU StuCo 98-023 Concurrent and Distributed Programming with Inferno and Limbo

52Intel Research Pittsburgh Seminar

For more information:

• An Inferno/Limbo Mailing List

• http://lists.gemusehaken.org/mailman/listinfo/inferno

• Public software repository

• http://www.gemusehaken.org/ipwl/sourcecode

• Other resources

• Public Certificate Authority

• Public CPU/resource servers (You will need to obtain certificates from above to
use these.)

53Intel Research Pittsburgh Seminar

(Amazon is bundling it with TAOUP. Not shameless self-promotion if I’m promoting someone else’s book too ? :)

54
Backup Slides

Intel Research Pittsburgh Seminar

Backup slides

55
Backup Slides

Intel Research Pittsburgh Seminar

Connecting to remote systems:
the mount(1) utility

• Connect to remote system, attach (union) their
filesystem name space to local name space

• Manner in which union happens is determined by flags
• -b (MBEFORE flag in Limbo module version)

• -a (MAFTER flag in Limbo module version)

• -c (MCREATE in Limbo module version)

• Also, whether or not to authenticate connection, -A (Mount uses a previously
saved certificate in authentication, which must have been previously obtained from a
certificate authority)

56
Backup Slides

Intel Research Pittsburgh Seminar

• Basic types
• int — 32-bit, signed 2’s complement notation
• big — 64-bit, signed 2’s complement notation
• byte — 8-bit, unsigned
• real — 64-bit IEEE 754 long float
• string — Sequence of 16-bit Unicode characters

• Structured Types
• array — Array of basic or structured types
• adt, ref adt — Grouping of data and functions
• list — List of basic or structured data types, list of list, etc.
• chan — channel (inter-thread communication path) of basic or structured type
• Tuples — Unnamed collections of basic / structured types

Language Data Types

57
Backup Slides

Intel Research Pittsburgh Seminar

• Applications are structured as a collection of modules

• Component modules of an application are loaded
dynamically and type-checked at runtime
• Each compiled program is a single module

• Any module can be loaded dynamically and used by another module
• Shell loads helloworld.dis when instructed to, and “runs” it

• There is no static linking
• Compiled “Hello World” does not contain code for print etc.

Modules

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello!\n”);

}

58
Backup Slides

Intel Research Pittsburgh Seminar

• Module interface definitions often placed in separate “.m” files by convention
• Module definitions define a new “type”
• Compiled modules in “.dis” file contains this type information
• lvalue of a load statement must match this type

Hello World

implement HelloWorld;

include “sys.m”;
include “draw.m”;

sys: Sys;

HelloWorld: module
{

init: fn(ctxt: ref Draw->Context, args: list of string);
}

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello!\n”);

}

Module Name

Various Includes

Module Type (interface) Definition

Module Implementation

59
Backup Slides

Intel Research Pittsburgh Seminar

• Module type information is statically fixed in caller
module, but the actual implementation loaded at run
time is not fixed, as long as it type-checks

Dynamic Loading of
Modules

Sh module (the command shell)
loads the Bufio, Env and other
modules at runtime. The Env
module loads other modules that
it may need (e.g., Readdir)

60
Backup Slides

Intel Research Pittsburgh Seminar

• Channels are communication paths between threads

• Declared as chan of <any data type>
• mychan : chan of int;
• somechan : chan of (int, string, chan of MyAdt);

• Synchronous (blocking/rendezvous) communication
between threads

• Channel operations
• Send : mychan <-= 5;

• Receive : myadt = <- somechan;

• Alternate (monitor multiple channels for the capability to send or receive)

Channels

61
Backup Slides

Intel Research Pittsburgh Seminar

• Interloper (ipwl book, pg. 192) is a simple program that lets you
observe Styx messages/local procedure calls generated by
name space operations

Example : Snooping on Styx

; interloper
Message type [Tattach] length [61] from MOUNT --> EXPORT
Message type [Rattach] length [13] from EXPORT --> MOUNT
; cd /n/remote
; pwd
Message type [Tclone] length [7] from MOUNT --> EXPORT
Message type [Rclone] length [5] from EXPORT --> MOUNT
Message type [Tstat] length [5] from MOUNT --> EXPORT
Message type [Rstat] length [121] from EXPORT --> MOUNT
Message type [Tclunk] length [5] from MOUNT --> EXPORT
Message type [Rclunk] length [5] from EXPORT --> MOUNT
/n/#/
;

