
98-023A Lecture 9

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 9

• Native Kernel Overview

• Kernel Compilation

Lecture Outline

398-023A Lecture 2

No Class Next Week
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS

• Week 7: C applications as resource servers: Built-in modules and device drivers

• Week 8: Case study I — building a distributed multi-processor simulator

• Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 10: Programing with threads, CSP

• Week 11: Debugging concurrent programs; Promela and SPIN

• Week 12: Factotum, Secstore and Inferno’s security architecture

• Week 13: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

498-023A Lecture 9

Kernel Components

• Virtual machine

• Built-in modules

• Device drivers
• Virtual devices like devprog

• Hardware device drivers like devns16552 (Natl. semi UART), dev8139
(Realtek Ethernet)

• Facilities
• Process creation, process scheduling

• Synchronization primitives

• Memory management primitives

598-023A Lecture 9

Threads versus Processes

• To make the following discussion easier, some
terminology:

• We will use thread henceforth to refer to a Limbo
thread, executing over the Dis VM

• We’ll use the term process to refer to a host OS or
native Inferno kernel thread/process, regardless of
whether it is implemented as a real process, or using
e.g., pthreads

698-023A Lecture 9

Kernel Processes

• The core of the emulator (Dis VM) executes as a single
thread

• New threads may be created in response to actions of
device drivers or built-in modules

• In general, a device drivers will call upon emulator facilities to create a new
process if it needs to perform some task offline

• Example: sys->export() with the flag Sys->EXPASYNC does this

798-023A Lecture 9

Limbo Threads and Kernel
Processes

898-023A Lecture 9

Kernel Source

• Emulator source resides in /os/:
/os/
ipaq1110/
archipaq.c
dat.h
deveia.c
defont.c
devaudio.c
...
main.c

• Each system architecture directory contains platform
specific code for kernel on that host platform
• Most of the data structures defined in emulators /emu/port/dat.h are in /os/port/

portdat.h
• Each architecture usually defines its dat.h with arch-specific data structures

998-023A Lecture 9

Supported system architectures

• cerf1110
• cerf405
• fads
• ipaq1110
• ipengine
• js
• ks32
• mpc
• omap
• pc
• rpcg
• sa1110

1098-023A Lecture 9

Kernel source

• The bulk of the kernel source is architecture
independent, and is in /os/port/
/emu/
port/
alarm.c
alloc.c
chan.c
...
devaudio.c
devprog.c
devssl.c
taslock.c

• Kernel source relies on many routines implemented in
the libraries (e.g., libdraw, libinterp, etc), which are shared
with emulator

1198-023A Lecture 9

Important Header Files:
/os/archname/dat.h

• Each specific system architecture has its own dat.h,
containing architecture specific data structures

Usually contains structures accessed by l.s, assembler
startup code

• Lock data structures: struct Lock

• Machine configuration: struct Conf

• Machine state (e.g., CPU speed, time since boot, etc): struct Mach

1298-023A Lecture 9

Important Header Files:
/os/port/portdat.h

• Important data structures and constants are defined in

/os/port/portdat.h

• Defines Chan, Proc, Osenv, Dev, Dirtab (discussed in previous lecture) and
other data structures

1398-023A Lecture 9

Chan structure : used to manage communication
between Mount Driver (recall, #M) and device drivers

struct Chan
{
 Lock l;
 Ref r;
 Chan* next; /* allocation */
 Chan* link;
 vlong offset; /* in file */
 ushort type;
 ulong dev;
 ushort mode; /* read/write */
 ushort flag;
 Qid qid;
 int fid; /* for devmnt */
 ulong iounit; /* chunk size for i/o; 0==default */
 Mhead* umh; /* mount point that derived Chan; used in unionread */
 Chan* umc; /* channel in union; held for union read */
 QLock umqlock; /* serialize unionreads */
 int uri; /* union read index */
 int dri; /* devdirread index */
 ulong mountid;
 Mntcache *mcp; /* Mount cache pointer */
 Mnt *mux; /* Mnt for clients using me for messages */
 void* aux; /* device specific data */
 Chan* mchan; /* channel to mounted server */
 Qid mqid; /* qid of root of mount point */
 Cname *name;
};

Important Header
Files: dat.h

1498-023A Lecture 9

struct Dev
{
 int dc;
 char* name;

 void (*init)(void);
 Chan* (*attach)(char*);
 Walkqid* (*walk)(Chan*, Chan*, char**, int);
 int (*stat)(Chan*, uchar*, int);
 Chan* (*open)(Chan*, int);
 void (*create)(Chan*, char*, int, ulong);
 void (*close)(Chan*);
 long (*read)(Chan*, void*, long, vlong);
 Block* (*bread)(Chan*, long, ulong);
 long (*write)(Chan*, void*, long, vlong);
 long (*bwrite)(Chan*, Block*, ulong);
 void (*remove)(Chan*);
 int (*wstat)(Chan*, uchar*, int);
};

Pointers to
functions to be

called for various
Styx operations

Important Header
Files: dat.h

1598-023A Lecture 2

• Mount device delivers file operations to appropriate local device driver
via subroutine calls

• If file being accessed is from an attached namespace, deliver styx
messages to remote machine’s mount driver

Remember The Mount Device, #M ?

Inferno Kernel Internal
Chan* structure

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Eventually end up as in-
kernel subroutine calls to
appropriate device driver

Is name part of a remotely
attached name space ?

Send Styx messages (over
“network”)

1698-023A Lecture 9

Important Header
Files: dat.h

struct Proc
{
 int type; /* interpreter or not */
 char text[KNAMELEN];
 Proc* qnext; /* list of processes waiting on a Qlock */
 long pid;
 Proc* next; /* list of created processes */
 Proc* prev;
 Lock rlock; /* sync between sleep/swiproc for r */
 Rendez* r; /* rendezvous point slept on */
 Rendez sleep; /* place to sleep */
 int killed; /* by swiproc */
 int swipend; /* software interrupt pending for Prog */
 int syscall; /* set true under sysio for interruptable syscalls */
 int intwait; /* spin wait for note to turn up */
 int sigid; /* handle used for signal/note/exception */
 Lock sysio; /* note handler lock */
 char genbuf[128]; /* buffer used e.g. for last name element from namec */
 int nerr; /* error stack SP */
 osjmpbuf estack[NERR]; /* vector of error jump labels */
 char* kstack;
 void (*func)(void*); /* saved trampoline pointer for kproc */
 void* arg; /* arg for invoked kproc function */
 void* iprog; /* work for Prog after release */
 void* prog; /* fake prog for slaves eg. exportfs */
 Osenv* env; /* effective operating system environment */
 Osenv defenv; /* default env for slaves with no prog */
 osjmpbuf privstack; /* private stack for making new kids */
 osjmpbuf sharestack;
 Proc *kid;
 void *kidsp;
 void *os; /* host os specific data */
};

1798-023A Lecture 9

Compiling a Kernel

• Native Inferno kernels are not compiled with gcc
• Compiled with the Plan 9 compiler toolchain,e.g., for 386, 8a, 8c, 8l

• 8a — The assembler (also, 5a (arm), qa (powerpc) etc.)

• 8c — The C compiler (also 5c, (arm), qc (powerpc) etc.)

• 8l — The linker/loader, but also does some optimization

• Implementation uses some features outside ANSI C
• Unnamed union substructures

• Unnamed function parameters

1898-023A Lecture 9

Kernel Config file

• Kernel config file (format as in emulator config file
discussed in previous lecture)

• Parsed by the several shell scripts to fill out the mkfile,
create table of device drivers, etc.

1998-023A Lecture 9

Example: Compiling a
native kernel

2098-023A Lecture 9

Next

• Kernel initialization/startup sequence

Fin.

