98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

Phillip Stanley-Marbell

pstanley@ece.cmu.edu

98-023A Lecture 8

Lecture Outline

e Emulator
o Limbo Threads versus Emulator Processes

e Emulator

98-023A Lecture 8

The Inferno Emulator,
emu

® The Inferno emulator is

° |t , from the virtual
machine down to device drivers (inclusive)

e Most device drivers available in native Inferno are duplicated in the emulator

e Device drivers in emulator are not real “device drivers”, i.e., they do not drive
actual hardware

e Device ,
but call on host OS to do the dirty work

98-023A Lecture 8

Emulator Components

¢ Virtual machine
¢ Built-in modules
e Device drivers

* Facilities
e Thread / process creation (depends on host OS model)
e Synchronization primitives
e Memory management primitives

e More on emulator threads follows...

98-023A Lecture 8

Threads versus Processes

* To make the following discussion easier, some
terminology:

e We will use henceforth to refer to a Limbo
thread, executing over the DisVM

 We'll use the term to refer to a host OS or
native Inferno kernel thread/process, regardless of

whether it is implemented as a real process, or using
e.g., pthreads

98-023A Lecture 8

Emulator Processes

* The core of the emulator (Dis VM) executes as a single
thread

* New threads may be created in response to actions of
device drivers or built-in modules

e In general, a device drivers will call upon emulator facilities to create a new
process if it needs to perform some task offline

e Example: sys->export () with the flag Sys->EXPASYNC does this

98-023A Lecture 8

Limbo Threads and Emulator
Processes

Kernel process

I' is used to run
Limbo threads @ and @ at different

points in time

Limbo Threads
Thread @ gets run in kernel processes
at different points in its lifetime

Virtual Machine

Native Inferno Kernel / Host Operating System

! @é ®> | @é

"-_\-\

Inferno Kemel Processes

98-023A Lecture 8

Limbo Threads and Emulator
Processes

(Message received b)
QSEJI{J’ State S Y @

g
En’ﬂ'ng State J @iﬁ'.lﬂﬁf{’?:‘ State J E
: .
: g
oY =
- » g ™
@Rera* State Messpge sent by (1)) ﬁ
Ready Queue ""E'f
© @ ® £
I L[_Rmdy StntEHRmdy StntE)——[Rmdy State i
-4
Q)
___________________ ~
S v
8]
<53
> U
() Limbo Thread = 2
]
| Inferno Kernel or Host OS process E“*

98-023A Lecture 8

00

Emulator Source

* Emulator source resides in /emu/
/emu/

MacOSX/
asm-power.s
cmd.c
deveia.c
devfs.c
ipif.c
0S.C

* Each system architecture directory contains platform
specific code for emulator on that host platform

e Code for creating processes etc. (in 0S.C)
* Interacting with host’s filesystem (devfs.c)
* Accessing host’s network protocol stack (ipif.c), etc.

98-023A Lecture 8

Emulator source

e The bulk of the emulator source is architecture

independent, and is in /emu/port/

/emu/
port/
audio.h

devprog.c
devssl.c
win-xll.c

e |n general, throughout source tree, architecture independent (or) code is
placed in a directory called port/

* Emulator source relies on many routines implemented
in the libraries (e.g., libdraw, libinterp, €tc), which are shared
with native kernel

98-023A Lecture 8

Important Header Files:
dat.h,fns.h,error.h

* Important data structures and constants are defined in
/emu/port/dat.h

* Function prototype definitions are in
/emu/port/fns.h

* Error message extern declarations are in
/emu/port/error.h

¢ Most device drivers and built-in modules will include all
three

98-023A Lecture 8

struct Chan

{ Lock 1 Important Header

Ref . .

Chan* next; * allocation */ FlleS.

Chan* Tink;

viong offset; * in file */

ushort type;

ulong dev;

ushort mode; * read/write */

ushort flag;

Q1id qid; |

int fid; | * for devmnt */

ulong iounit; : /* chunk size for i/o; O==default */

Mhead* umh; / mount point that derived Chan; used in unionread */
Chan* umc; channel 1n union; he1d for union read */
QLock umqglock; * serialize un1onreads %

int uri; * union read index */

int dri; * devdirread index */

ulong mountid;
Mntcache *mcp;
Mnt *Mux;
void* aux;
Chan* mchan;
Qid mgid;
Cname *name;

* Mount cache pointer */

* Mnt for clients using me for messages *
* device specific data */

* channel to mounted server */

* gid of root of mount point */

/.
/.
/.
/.
/.
/.
/.
/.
/.

Chan structure : used to manage communication
between Mount Driver (recall, #M) and device drivers

98-023A Lecture 8 12

Important Header
Files:

struct Dev

{

int dc;

*1ni1t) (void);
*attach) (char¥®) ; ;
Walkgid* (*walk) (Chan*, Chan*, char**, int);:
int *stat) (Chan*, uchar*, int): :
Chan* *open) (Chan*, 1nt);
void *create) (Chan*, char®*, int, ulong);
void *close) (Chan¥*) ;
lTong *read) (Chan*, void*, long, vlong);
Block™ *bread) (Chan*, long, ulong);
long *write) (Chan*, void*, long, vlong);
lTong *bwrite) (Chan*, Block*, ulong);
' 3 VO1d *remove) (Chan¥*) ;
Pointers to | ' *wstat) (Chan*, uchar®, 1int);

functions to be
called for various
Styx operations

98-023A Lecture 8 13

Remember The Mount Device, #M ?

Is name part of a remotely
-- attached name space ?
, (over
— ————————————————————————————————— i ————————————— “network”)

Inferno Kernel Internal
Chan* structure

—— e — e — — — — — — — — — — — — — —_—

Eventually end up as in-
kernel |

¢ Mount device

* If file being accessed is from an attached namespace,

98-023A Lecture 2

struct Dirtab
{

char
Qid
viong
long

Important Header
Files:

name [KNAMELEN] ;
qid;

length;

perm;

The D1rtab structure is used to represent information
about files and directories.

Recall the Styx RSTAT message (also, remember possible

project topic)

98-023A Lecture 8

15

struct Proc

{
int type; /* interpreter or not */
char text [KNAMELEN];
Proc* gnext; /* 1ist of processes waiting on a Qlock */
Tong pid;
Proc* next; /* 1ist of created processes */
Proc* prev;
Lock rlock; /* sync between sleep/swiproc for r */
Rendez* r; /* rendezvous point slept on */
Rendez sleep; /* place to sleep */
int killed; /* by swiproc */
int swipend; /* software interrupt pending for Prog */
int syscall; /* set true under sysio for interruptable syscalls */
int intwait; /* spin wait for note to turn up */
int s1gid; /* handle used for signal/note/exception */
Lock sysio; /* note handler lock */
char genbuf[128]; /* buffer used e.g. for last name element from namec */
int nerr; /* error stack SP */
osjmpbuf estack[NERR]; /* vector of error jump labels */
char* kstack;
void (*func) (void*); /* saved trampoline pointer for kproc */
void* arg, /* arg for invoked kproc function */
void* 1iprog; /* work for Prog after release */
void* prog; /% fake prog for slaves eg. exportfs */
Osenv* env; /* effective operating system environment */
Osenv defenv; /* default env for slaves with no prog */
osjmpbuf privstack; /* private stack for making new kids */
osjmpbuf sharestack;
Proc *Kkid;
void *kidsp; Important Header
void *0s; * host os specific data * .

}; / i / Files:

98-023A Lecture 8 ‘ 16

Important Header
Files:

struct Osenv
{
char *syserrstr; /* last error from a system call, errbufO or 1 */
char rerrstr; /* reason we're unwinding the error stack, errbufl or 0 */
char errbufO[ERRMAX] ;
char errbufl[ERRMAX] ;
Pgrp* pgrp; /* Ref to namespace, working dir and root */
Fgrp* fgrp; /* Ref to file descriptors */
Egrp* egrp; /* Environment vars */
Skeyset* S1gs; /* Signed module keys */
Rendez* rend; /* Synchro point */
Queue* waitq; /* Info about dead children */
Queue* childq; /* Info about children for debuggers */
void* debug; /* Debugging master */
char* user; /* Inferno user name */
FPU fpu; * Floating point thread state */
int uid; * Numeric user id for host system */
int gid; * Numeric group id for host system */
void *ui; * User info for NT */

98-023A Lecture 8 17

Important Header Files:
fns.h

ulong FPcontrol (ulong,ulong);
ulong FPstatus(ulong,ulong);

void FPsave(void*);

void FPrestore(void¥®);
void Sleep(Rendez*, int (*)(void*), void¥*);
int Wakeup (Rendez*) ;
void FPinit(void);

void addprog(Proc*);
Block* adjustblock(Block*, 1nt);
Block* allocb(int);

Block* bl2mem(uchar*, Block*, 1nt);
char* c2name (Chan*) ;

int canlock(Lock®) ;

int canglock(QLock*) ;

Tong devbwrite(Chan*, Block*, ulong);

void devcreate(Chan*, char*, int, ulong);

void devdir(Chan*, Qid, char*, long, char*, long, Dir¥*);
lTong devdirread(Chan*, char*, long, Dirtab*, int, Devgen¥*);
void devinit(void);

Chan* devattach(int, char®*);

Block* devbread(Chan*, long, ulong);
Chan* devclone(Chan*);

Devgen devgen;

98-023A Lecture 8 18

Example: Compiling the
Emulator

98-023A Lecture 8

Reading

* Relevant chapters of the book: Chapter 6

e Do homework 2!

* Read the document nativeinferno.pdf on blackboard that
describes building the native kernel and making a
bootdisk

e This may help clarify-reinforce lecture 7 as well as homework 2 question I.

98-023A Lecture 8

Next

e Emulator / Kernel device driver interface

L.

98-023A Lecture 8

