
98-023A Lecture 8

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 8

• Emulator Overview

• Terminology: Limbo Threads versus Emulator Processes

• Emulator data structures

Lecture Outline

398-023A Lecture 8

The Inferno Emulator,
emu

• The Inferno emulator is an application that runs
unprivileged over a host OS

• It emulates the whole Inferno OS, from the virtual
machine down to device drivers (inclusive)

• Most device drivers available in native Inferno are duplicated in the emulator

• Device drivers in emulator are not real “device drivers”, i.e., they do not drive
actual hardware

• Device drivers in emulator provide (almost) the same interface as native drivers,
but call on host OS to do the dirty work

498-023A Lecture 8

Emulator Components

• Virtual machine

• Built-in modules

• Device drivers

• Facilities

• Thread / process creation (depends on host OS model)

• Synchronization primitives

• Memory management primitives

• More on emulator threads follows...

598-023A Lecture 8

Threads versus Processes

• To make the following discussion easier, some
terminology:

• We will use thread henceforth to refer to a Limbo
thread, executing over the Dis VM

• We’ll use the term process to refer to a host OS or
native Inferno kernel thread/process, regardless of
whether it is implemented as a real process, or using
e.g., pthreads

698-023A Lecture 8

Emulator Processes

• The core of the emulator (Dis VM) executes as a single
thread

• New threads may be created in response to actions of
device drivers or built-in modules

• In general, a device drivers will call upon emulator facilities to create a new
process if it needs to perform some task offline

• Example: sys->export() with the flag Sys->EXPASYNC does this

798-023A Lecture 8

Limbo Threads and Emulator
Processes

898-023A Lecture 8

Limbo Threads and Emulator
Processes

998-023A Lecture 8

Emulator Source

• Emulator source resides in /emu/
/emu/
MacOSX/
asm-power.s
cmd.c
deveia.c
devfs.c
ipif.c
os.c

• Each system architecture directory contains platform
specific code for emulator on that host platform
• Code for creating processes etc. (in os.c)
• Interacting with host’s filesystem (devfs.c)
• Accessing host’s network protocol stack (ipif.c), etc.

1098-023A Lecture 8

Emulator source

• The bulk of the emulator source is architecture
independent, and is in /emu/port/
/emu/
port/
audio.h
...
devprog.c
devssl.c
win-xll.c

• In general, throughout source tree, architecture independent (or portable) code is
placed in a directory called port/

• Emulator source relies on many routines implemented
in the libraries (e.g., libdraw, libinterp, etc), which are shared
with native kernel

1198-023A Lecture 8

Important Header Files:
dat.h, fns.h, error.h

• Important data structures and constants are defined in
/emu/port/dat.h

• Function prototype definitions are in
/emu/port/fns.h

• Error message extern declarations are in
/emu/port/error.h

• Most device drivers and built-in modules will include all
three

1298-023A Lecture 8

Chan structure : used to manage communication
between Mount Driver (recall, #M) and device drivers

struct Chan
{
 Lock l;
 Ref r;
 Chan* next; /* allocation */
 Chan* link;
 vlong offset; /* in file */
 ushort type;
 ulong dev;
 ushort mode; /* read/write */
 ushort flag;
 Qid qid;
 int fid; /* for devmnt */
 ulong iounit; /* chunk size for i/o; 0==default */
 Mhead* umh; /* mount point that derived Chan; used in unionread */
 Chan* umc; /* channel in union; held for union read */
 QLock umqlock; /* serialize unionreads */
 int uri; /* union read index */
 int dri; /* devdirread index */
 ulong mountid;
 Mntcache *mcp; /* Mount cache pointer */
 Mnt *mux; /* Mnt for clients using me for messages */
 void* aux; /* device specific data */
 Chan* mchan; /* channel to mounted server */
 Qid mqid; /* qid of root of mount point */
 Cname *name;
};

Important Header
Files: dat.h

1398-023A Lecture 8

struct Dev
{
 int dc;
 char* name;

 void (*init)(void);
 Chan* (*attach)(char*);
 Walkqid* (*walk)(Chan*, Chan*, char**, int);
 int (*stat)(Chan*, uchar*, int);
 Chan* (*open)(Chan*, int);
 void (*create)(Chan*, char*, int, ulong);
 void (*close)(Chan*);
 long (*read)(Chan*, void*, long, vlong);
 Block* (*bread)(Chan*, long, ulong);
 long (*write)(Chan*, void*, long, vlong);
 long (*bwrite)(Chan*, Block*, ulong);
 void (*remove)(Chan*);
 int (*wstat)(Chan*, uchar*, int);
};

Pointers to
functions to be

called for various
Styx operations

Important Header
Files: dat.h

1498-023A Lecture 2

• Mount device delivers file operations to appropriate local device driver
via subroutine calls

• If file being accessed is from an attached namespace, deliver styx
messages to remote machine’s mount driver

Remember The Mount Device, #M ?

Inferno Kernel Internal
Chan* structure

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Eventually end up as in-
kernel subroutine calls to
appropriate device driver

Is name part of a remotely
attached name space ?

Send Styx messages (over
“network”)

1598-023A Lecture 8

struct Dirtab
{
 char name[KNAMELEN];
 Qid qid;
 vlong length;
 long perm;
};

Important Header
Files: dat.h

The Dirtab structure is used to represent information
about files and directories.

Recall the Styx RSTAT message (also, remember possible
project topic)

1698-023A Lecture 8

Important Header
Files: dat.h

struct Proc
{
 int type; /* interpreter or not */
 char text[KNAMELEN];
 Proc* qnext; /* list of processes waiting on a Qlock */
 long pid;
 Proc* next; /* list of created processes */
 Proc* prev;
 Lock rlock; /* sync between sleep/swiproc for r */
 Rendez* r; /* rendezvous point slept on */
 Rendez sleep; /* place to sleep */
 int killed; /* by swiproc */
 int swipend; /* software interrupt pending for Prog */
 int syscall; /* set true under sysio for interruptable syscalls */
 int intwait; /* spin wait for note to turn up */
 int sigid; /* handle used for signal/note/exception */
 Lock sysio; /* note handler lock */
 char genbuf[128]; /* buffer used e.g. for last name element from namec */
 int nerr; /* error stack SP */
 osjmpbuf estack[NERR]; /* vector of error jump labels */
 char* kstack;
 void (*func)(void*); /* saved trampoline pointer for kproc */
 void* arg; /* arg for invoked kproc function */
 void* iprog; /* work for Prog after release */
 void* prog; /* fake prog for slaves eg. exportfs */
 Osenv* env; /* effective operating system environment */
 Osenv defenv; /* default env for slaves with no prog */
 osjmpbuf privstack; /* private stack for making new kids */
 osjmpbuf sharestack;
 Proc *kid;
 void *kidsp;
 void *os; /* host os specific data */
};

1798-023A Lecture 8

struct Osenv
{
 char *syserrstr; /* last error from a system call, errbuf0 or 1 */
 char *errstr; /* reason we're unwinding the error stack, errbuf1 or 0 */
 char errbuf0[ERRMAX];
 char errbuf1[ERRMAX];
 Pgrp* pgrp; /* Ref to namespace, working dir and root */
 Fgrp* fgrp; /* Ref to file descriptors */
 Egrp* egrp; /* Environment vars */
 Skeyset* sigs; /* Signed module keys */
 Rendez* rend; /* Synchro point */
 Queue* waitq; /* Info about dead children */
 Queue* childq; /* Info about children for debuggers */
 void* debug; /* Debugging master */
 char* user; /* Inferno user name */
 FPU fpu; /* Floating point thread state */
 int uid; /* Numeric user id for host system */
 int gid; /* Numeric group id for host system */
 void *ui; /* User info for NT */
};

Important Header
Files: dat.h

1898-023A Lecture 8

Important Header Files:
fns.h

ulong FPcontrol(ulong,ulong);
ulong FPstatus(ulong,ulong);
void FPsave(void*);
void FPrestore(void*);
void Sleep(Rendez*, int (*)(void*), void*);
int Wakeup(Rendez*);
void FPinit(void);
void addprog(Proc*);
Block* adjustblock(Block*, int);
Block* allocb(int);
Block* bl2mem(uchar*, Block*, int);
char* c2name(Chan*);
int canlock(Lock*);
int canqlock(QLock*);
...
long devbwrite(Chan*, Block*, ulong);
void devcreate(Chan*, char*, int, ulong);
void devdir(Chan*, Qid, char*, long, char*, long, Dir*);
long devdirread(Chan*, char*, long, Dirtab*, int, Devgen*);
void devinit(void);
...
Chan* devattach(int, char*);
Block* devbread(Chan*, long, ulong);
Chan* devclone(Chan*);
Devgen devgen;

1998-023A Lecture 8

Example: Compiling the
Emulator

2098-023A Lecture 8

Reading

• Relevant chapters of the book: Chapter 6

• Do homework 2 !

• Read the document nativeinferno.pdf on blackboard that
describes building the native kernel and making a
bootdisk

• This may help clarify-reinforce lecture 7 as well as homework 2 question 1.

2198-023A Lecture 8

Next

• Emulator / Kernel device driver interface

Fin.

