
98-023A Lecture 7

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 7

• Inferno Kernel / Emulator Overview

• Source tree and compilation tools

• Example: Compiling the emulator

Lecture Outline

398-023A Lecture 7

Inferno Source Tree
• Architecture directories

• /FreeBSD
• /Hp, etc.

• Libraries
• /lib9 etc.

• Emulator
• /emu

• Native Kernels
• /os

and...

• Inferno root
• /dev
• /dis, etc.

498-023A Lecture 7

Architecture Directories

• For each system architecture (e.g., Linux), there may be many
different machine architectures (e.g., 386, arm, mips, etc.)

/Linux/
386/
bin/
asm
...
limbo
mk
yacc

include/
fpuctl.h
lib9.h

lib/
libbio.a
...
lib9.a

598-023A Lecture 7

Architecture Directories

• Architecture directories contain host-specific header files
and libraries for compiling the emulator, as well as the
host-specific tools for compiling native kernels

• Example: mk, the compilation / maintenance utility
/Linux/
386/
bin/
mk

• Example: Libraries which emulator links against
/Linux/
386/
lib/
libbio.a
...
lib9.a

698-023A Lecture 7

Emulator Source

• Emulator source resides in /emu/
/emu/
MacOSX/
asm-power.s
cmd.c
deveia.c
devfs.c
ipif.c
os.c

• Each system architecture directory contains platform
specific code for emulator on that host platform
• Code for creating processes (in os.c)
• Interacting with host’s filesystem (devfs.c)
• Accessing host’s network protocol stack (ipif.c), etc.

798-023A Lecture 7

Emulator source

• The bulk of the emulator source is architecture
independent, and is in /emu/port/
/emu/
port/
audio.h
...
devprog.c
devssl.c
win-xll.c

• In general, throughout source tree, architecture independent (or portable) code is
placed in a directory called port/

• Emulator source relies on many routines implemented
in the libraries (e.g., libdraw, libinterp, etc), which are
shared with native kernel

898-023A Lecture 7

Compilation Tools

• Mk

• The analogue of make on Unix

• Follows rules defined in a mkfile

• You’ll need to bootstrap a working mk before you can compile any of the tools

• A working mk is provided for all supported host platforms; Otherwise you can
compile manually or from a shell script

998-023A Lecture 7

Compilation: Configuration Files
• All mkfiles include the configuration file /mkconfig

<../../mkconfig # Pull in mkconfig from two steps below in tree

• mkconfig defines many variables used throughout
• ROOT : This defines the location of the root of your inferno source tree

• SYSHOST : The system architecture of host machine

• SYSTARG : The system architecture that is is being compiled for. When building the
emulator, this is identical to SYSHOST. When building native kernel, this is set to
“Inferno”

• OBJTYPE : The machine architecture of the target machine (as defined in SYSTARG)

• mkconfig includes two additional files which define compiler
to use, etc.

1098-023A Lecture 7

Compilation: Configuration Files

• mkconfig includes two more configuration files, based on
SYSHOST, SYSTARG and OBJTYPE

/mkfiles/mkhost-$SYSHOST
• e.g., /mkfiles/mkhostMacOSX. Defines things like

AWK = gawk
CP = cp
SHELLNAME = /bin/sh

/mkfiles/mkfile-$SYSTARG-$OBJTYPE
• e.g., /mkfiles/mkfile-MacOSX-power
AS = gcc -c
CC = gcc -c
CFLAGS = -arch ppc -Wno-long-double -I$ROOT/MacOSX/power/include
etc.

1198-023A Lecture 7

Configuration: Emulator
Configuration files

• These defines what files to build into emulator

• Parsed my shell scripts to generate a c source file and a
header file

• More on these when we talk about kernel config. files...

1298-023A Lecture 7

Example: Compiling the
Emulator

1398-023A Lecture 7

Next

• Emulator structure and data structures

• Kernel structure and data structures

• Getting Inferno to run on a Linksys wrt54g 802.11g
wireless router Fin.

