
98-023A Lecture 5

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 5

• More Limbo data types

• Project discussion

Lecture Outline

398-023A Lecture 5

Course Outline : Syllabus
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS February 16th and February 18th

• Week 7: C applications as resource servers: Built-in modules and device drivers

• Week 7: Case study I — building a distributed multi-processor simulator

• Week 8: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 9: Programing with threads, CSP

• Week 10: Debugging concurrent programs; Promela and SPIN

• Week 11: Factotum, Secstore and Inferno’s security architecture

• Week 12: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

498-023A Lecture 5

Status

• We’ve learnt a bit about Inferno in general

• We’ve seen an introduction to Limbo
• Today we’ll learn more about data types in Limbo

• Next, Dis VM, Inferno Kernel

• Once we’ve gotten a good feel for both Inferno and Limbo,
we’ll start looking specifically at concurrency and building
distributed applications

598-023A Lecture 5

Inferno System Structure

Built-in Modules

“#M”

698-023A Lecture 5

Unicode vs. ASCII
• ASCII and Unicode are encodings or code sets for

representing characters — they assign unique numbers
to characters

• ASCII is a 7 bit encoding, with 128 member characters,
ranging from 0 (NUL) to 127 (DEL) with everything in
between (e.g., p is 112)

• Unicode is a 16 bit encoding (well, the full ISO 10646 is
32 bits)

• UTF-8 is an encoding for representing a Unicode
characters
• A 16 bit Unicode character maps to 1, 2 or 3 UTF-8 bytes

798-023A Lecture 5

Strings

• Strings are sequences of Unicode characters
• The length of a string in terms of characters is therefore not always the same os

length in bytes. Why ?

• Anything wrong with the following statements ?
c : string;
c = ‘p’;
d : string;
d = “Hello!”;
d[5] = ‘?’;
d[5] = 33;
d[7] = ‘?’;
d[6] = ‘?’;

898-023A Lecture 5

Lists

• Can create lists of any (single) data type
menu0 : list of string;
menu1 := list of {”Quinoa”, “Soy”};
menu0 = “Soy”::menu0;
menu0 = “Quinoa”::menu0;

p = hd menu0;
q = hd menu1;

x := tl menu0;
y := “Soy”;

998-023A Lecture 5

Arrays

• Arrays of any (single) data type
jim : array of int;

• Declaration (above) does not allocate storage for array
• After the above, you cannot do

jim[4] = 2;

• Allocation must explicitly be performed, either
jim = array [32] of int;

• Or, at the same time as declaration
jim := array [32] of int;

• Can statically initialize array elements at declaration
jim := array [] of {”James”, “J.”, “Mikusi”};

1098-023A Lecture 5

Array and String Slices

• Can take “slices” or subset ranges of arrays and strings
jim := array [] of {”James”, “J.”, “Mikusi”};

lastname := jim[2:3];

• Can leave out top or bottom index if array/string is the source
lastname := jim[2:];

firstname := jim[:1];

nickname := jim[0][:1]+”imbox”;

1198-023A Lecture 5

Arrays, Strings and UTF 8

• Recall, strings are sequences of Unicode characters,
each of which may need more than one UTF-8 byte for
its representation
english : = “ants”;

greek := “μυρμιγκια”;
englishlen := len english;

greeklen := len greek;

• Cast to array of byte converts a Unicode string to ... an array of bytes
englishbytes := array of byte english;

greekbytes := array of byte greek;

1298-023A Lecture 5

Demo / Example

1398-023A Lecture 5

Tuples

• Tuples are collections of data items of any number of
types
info := (”Jane”, “Doe”, 22, 3.8);

• Most useful as the return types of functions

myfun(args : list of string) : (string, array of byte)
{
...
if (error)
{
return (”error”, nil);

}
return (””, array [] of {byte 22, byte 33});

}

1498-023A Lecture 5

1598-023A Lecture 5

Example: CacheLib

1698-023A Lecture 5

More...

• Pick ADTs

• Parametric polymorphism

• Fixed point types

• Type definitions

• e.g., long : type int;

1798-023A Lecture 5

Homework 2 (due Feb. 11th)

• Question 1
a. Install the Inferno emulator

b. Change the string defined in include/version.h to one of your own choice

c. Compile the emulator

d. Submit an executable emulator binary for your platform

• Question 2
a. Implement a Limbo program that reads in a text file and shifts each letter one

step in the alphabet, i.e., a -> b, b -> c, z -> a, Z -> A etc., and prints the resulting
transformed text.

1898-023A Lecture 5

Possible Project Ideas
• Extend the emulator or native kernel to make process creation

possible through the name space

• Implement a load balancer that works through the name space, and
manages the process creation interface of multiple hosts, add / delete
hosts, etc

• Implement a Server that speaks an extended version of Styx, that can:
• Associate a Limbo data type with each name space entry
• New Styx messages T_NAMETYPE and R_NAMETYPE

• Extend the emulator or native kernel to add the ability to associate
any valid Limbo data type with a name in the namespace
• Will involve extending Styx ([T/R]_NAME2TYPE
• All device driver interfaces will have to change

• Any other project of your own design / desire

1998-023A Lecture 5

2098-023A Lecture 5

Course Outline : Grading

• First 4 homeworks are mandatory, the remainder are
optional (5% each)

• 1 mini project (20%)

• 1 final project (60%)

• You should not be worried about your grade

2198-023A Lecture 5

Reading

• Relevant chapter in textbook : Chapter 3

2298-023A Lecture 5

Next Lecture

• The Dis VM internals pertaining to Limbo data types

Fin.

