98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

Phillip Stanley-Marbell

pstanley@ece.cmu.edu

98-023A Lecture 4

Lecture Outline

* Limbo data types

98-023A Lecture 4

Course Outline : Syllabus

e Week |: Introduction to Inferno
e Week 2: Overview of the Limbo programming language

e Week 3:Types in Limbo

Week 4: Inferno Kernel Overview

Week 5: Inferno Kernel Device Drivers

T Neds T

e Week 7: C applications as resource servers: Built-in modules and device drivers

e Week 8: Case study | — building a distributed multi-processor simulator
e Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

e Week |0: Programing with threads, CSP

e Week | |: Debugging concurrent programs; Promela and SPIN

e Week |2: Factotum, Secstore and Inferno’s security architecture

e Week | 3: Case study || — Edisong, a distributed audio synthesis and sequencing engine

98-023A Lecture 4 ‘ 3

Inferno’s VM: Dis

* Applications compiled for execution on the DisVM

* Dis has a memory-to-memory architecture, optimized
for on-the-fly compilation (contrast to the Java Virtual
Machine’s stack architecture)

* Many Dis VM opcodes map directly to Limbo language
constructs, but can support other languages

98-023A Lecture 4

Problem Solving/Demo:

98-023A Lecture 4

wrong

98-023A Lecture 4 6

Language Data lypes

* Basic types

. — 32-bit, signed 2’s complement notation

. — 64-bit, signed

. — 8-bit, unsigned

o — 64-bit IEEE 754 long float

. — Sequence of 16-bit Unicode characters

e Structured Types

° — Array of basic or structured types

o , — Grouping of data and functions

o — List of basic or structured data types, list of list, etc.
L

e Tuples

98-023A Lecture 4

Arrays

An airay, a, with 7 elements

[O)[1)[2][3]4](5]i6]
| S

Array slice a[:3]

98-023A Lecture 4

Lists

List Element

|
SN

S

List Head
(A list element) List Tail
(Itself a list)

98-023A Lecture 4

Problem Solving/Demo:

98-023A Lecture 4

Channels

* Channels are communication paths between threads

* Declared as chan of <any data type>

e mychan : chan of 1int;
e somechan : chan of (int, string, chan of MyAdt);

e Synchronous (blocking/rendezvous) communication
between threads

* Channel operations
o :mychan <-= 5;

o :myadt = <- somechan;

o (monitor multiple channels for the capability to send or receive)

98-023A Lecture 4

Example (what does it do ?)

implement X;

init(nil : ref Draw->Context, nil : 1list of string)
{
sys = load Sys Sys->PATH;

S 1 = 2 .
sourcechan := chan of 1int; :

o I

sieve(ourprime : int, inchan : chan of 1int)

{ .
h : int;
sys->print("%d ", ourprime);
hewchan := chan of 1int;

while (!((n = <-inchan) % ourprime))

spawn sieve(n, newchan);

98-023A Lecture 4 12

98-023A Lecture 4 13

Next week

* The DisVM and module binary format

* Limbo data types and the Dis VM

L.

98-023A Lecture 4

