
98-023A Lecture 3

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 3

• Introduction to the Limbo Programming language

• Limbo language genealogy

• (next week: Limbo data types and the Dis VM)

Lecture Outline

398-023A Lecture 3

Course Outline : Syllabus
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS

• Week 7: C applications as resource servers: Built-in modules and device drivers

• Week 8: Case study I — building a distributed multi-processor simulator

• Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 10: Programing with threads, CSP

• Week 11: Debugging concurrent programs; Promela and SPIN

• Week 12: Factotum, Secstore and Inferno’s security architecture

• Week 13: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

498-023A Lecture 3

Schedule Update

• Changed topic for weeks 4 and 5
• Will be covering the Inferno kernel and device drivers, due to popular demand

• I will be out of town (out of the country) during week 6
• No class February 16 and February 18th

598-023A Lecture 3

• Limbo is a concurrent programming language

• Language level support for thread creation, inter-thread communication over
typed channels

• Language-level communication channels

• Based on ideas from Hoare’s Communicating Sequential Processes (CSP)

• Features
• Safe : compiler and VM cooperate to ensure this
• Garbage collected
• Not O-O, but rather, employs a powerful module system
• Strongly typed (compile- and run-time type checking)

The Limbo Programming
Language

698-023A Lecture 3

Inferno System Structure

Built-in Modules

“#M”

798-023A Lecture 3

• Applications compiled for execution on the Dis VM

• Dis has a memory-to-memory architecture, optimized for
on-the-fly compilation (contrast to the Java Virtual
Machine’s stack architecture)

• Many Dis VM opcodes map directly to Limbo language
constructs, but can support other languages

• We’ll see more of this correspondence between Limbo
data types and Dis VM internals next week

Inferno’s VM: Dis

898-023A Lecture 3

• Limbo module implementations (like above) usually placed in a file with “.b” suffix

• Compiled modules placed in “.dis” (contain bytecode for execution on Dis VM)

Hello World
implement HelloWorld;

include “sys.m”;
include “draw.m”;

sys: Sys;

HelloWorld: module
{

init: fn(ctxt: ref Draw->Context, args: list of string);
}

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello World!\n”);

}

998-023A Lecture 3

Demo: Compiling and
running HelloWorld

1098-023A Lecture 3

• Module interface definitions often placed in separate “.m” files by convention
• Module definitions define a new “type”
• Compiled modules in “.dis” file contains this type information
• lvalue of a load statement must match this type

Hello World Module

implement HelloWorld;

include “sys.m”;
include “draw.m”;

sys: Sys;

HelloWorld: module
{

init: fn(ctxt: ref Draw->Context, args: list of string);
}

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello!\n”);

}

Module Name

Various Includes

Module Type (interface) Definition

Module Implementation

1198-023A Lecture 3

Interface vs.
Implementation

• Module interface defines a new type

• Module interface (type) can either be included inline, or
stored in a separate “.m” file and included
• Other modules which want to use eventual implementation will include this
“.m” header file

• Module implementation is an instance of this new type
• Implementation source is in “.b”, and eventual compiled binary in a “.dis”

1298-023A Lecture 3

• Applications are structured as a collection of modules

• Component modules of an application are loaded
dynamically and type-checked at runtime
• Each compiled program is a single module

• Any module can be loaded dynamically and used by another module
• Shell loads “helloworld.dis” when instructed to, and “runs” it

• There is no static linking
• Compiled “Hello World” does not contain code for print etc.

Modules

init(ctxt: ref Draw->Context, args: list of string)
{

sys = load Sys Sys->PATH;

This is a comment
sys->print(”Hello!\n”);

}

1398-023A Lecture 3

Compiled module
(”.dis”) contents

• Compiled modules contain only the code as defined in
source file

• Other modules used (e.g., for print) are not “compiled
in”, but are ALL loaded dynamically, at runtime, from a
specified file

1498-023A Lecture 3

Compiled module
(”.dis”) contents

• HelloWorld module only contains code to load Sys
module then do a module function call

1598-023A Lecture 3

Demo: disdump and
Module manager —
Examining an executable’s
contents

1698-023A Lecture 3

Demo (objdump -d on
a compiled C program)

1798-023A Lecture 3

• Basic types
• int — 32-bit, signed 2’s complement notation
• big — 64-bit, signed 2’s complement notation
• byte — 8-bit, unsigned
• real — 64-bit IEEE 754 long float
• string — Sequence of 16-bit Unicode characters

• Structured Types
• array — Array of basic or structured types
• adt, ref adt — Grouping of data and functions
• list — List of basic or structured data types, list of list, etc.
• chan — channel (inter-thread communication path) of basic or structured type
• Tuples — Unnamed collections of basic / structured types

Language Data Types

1898-023A Lecture 3

Limbo Modules
• How do you know where to load module

implementation from ?
• By convention, location of implementation is stored in the constant “PATH” of

the module’s interface declaration

• Example: /module/smtp.m

smtp protocol independent access to an email server.

Smtp : module
{
 PATH : con "/dis/lib/smtp.dis";

 open: fn(server : string) : (int, string);
 sendmail: fn(fromwho: string,
 towho: list of string,
 cc : list of string,
 msg: list of string) : (int, string);

 # close the connection - returns (status, error string)
 close: fn() : (int, string);
};

1998-023A Lecture 3

Built-in Modules
• These are modules

built into the
system, such as Sys

• Built-in modules are
implemented in C

• How are they
loaded since there
is no .dis file ?

• handle = load “$Name”;

Built-in Modules

“#M”

2098-023A Lecture 3

The Sys Built-in Module

• This provides the link between Limbo application and
Inferno kernel / emulator facilities

• Provides facilities for I/O etc.

2198-023A Lecture 3

More details on modules

• The “$Loader” built-in module

• Module signatures

• Module structure

• Generating C stubs from Limbo module definitions

• ... All of the above will be covered when we talk about Built-in Modules later in
the semester

2298-023A Lecture 3

• Module type information is statically fixed in caller
module, but the actual implementation loaded at run
time is not fixed, as long as it type-checks

Dynamic Loading of
Modules

Sh module (the command shell)
loads the Bufio, Env and other
modules at runtime. The Env
module loads other modules that
it may need (e.g., Readdir)

2398-023A Lecture 3

• An extensible packet sniffer architecture

• Dynamically loads and unloads packet decoder modules
based on observed packet types

• All implementations of packet decoders conform to a given module type (module
interface difinition)

• File name containing appropriate decoder module is “computed” dynamically
from packet type (e.g., ICMP packet inside Ethernet frame) , and loaded if
implementation is present

• New packet decoders at different layers of protocol stack can be added
transparently, even while Xsniff is already running!

Dynamic loading
example: Xsniff

2498-023A Lecture 3

2598-023A Lecture 3

Xsniff (1)

Xsniff Module Definition

implement Xsniff;

include "sys.m";
include "draw.m";
include "arg.m";
include "xsniff.m";

Xsniff : module
{

DUMPBYTES : con 32;

init : fn(nil : ref Draw->Context, args : list of string);
};

sys : Sys;
arg : Arg;
verbose := 0;
etherdump := 0;
dumpbytes := DUMPBYTES;

init(nil : ref Draw->Context, args : list of string)
{

n : int;
buf := array [Sys->ATOMICIO] of byte;

sys = load Sys Sys->PATH;
arg = load Arg Arg->PATH;

Modules which will
be run from shell

must define
“init” with this

signature

2698-023A Lecture 3

Xsniff (2)
dev := "/net/ether0";
arg->init(args);

 # Command line argument parsing. Omitted...

Open ethernet device interface
tmpfd := sys->open(dev+"/clone", sys->OREAD);

Determine which of /net/ether0/nnn
n = sys->read(tmpfd, buf, len buf);
(nil, dirstr) := sys->tokenize(string buf[:n], " \t");

channel := int (hd dirstr);
infd := sys->open(dev+sys->sprint("/%d/data", channel),

 sys->ORDWR);

sys->print("Sniffing on %s/%d...\n", dev, channel);
tmpfd = sys->open(dev+sys->sprint("/%d/ctl", channel),

 sys->ORDWR);

Get all packet types (put interface in promisc. mode)
sys->fprint(tmpfd, "connect -1");
sys->fprint(tmpfd, "promiscuous");

Spawn new thread w/ ref to opened ethernet device
spawn reader(infd, args);

}

spawn statement
creates new thread

from function

Open data interface
for Ethernet driver

Open control
interface for

Ethernet driver

2798-023A Lecture 3

Xsniff (3)
reader(infd : ref Sys->FD, args : list of string)
{

n : int;
ethptr : ref Ether;
fmtmod : XFmt;

ethptr = ref Ether(array [6] of byte, array [6] of byte,
 array [Sys->ATOMICIO] of byte,0);

while (1)
{
 n = sys->read(infd, ethptr.data, len ethptr.data);

 ethptr.pktlen = n - len ethptr.rcvifc;
 ethptr.rcvifc = ethptr.data[0:6];
 ethptr.dstifc = ethptr.data[6:12];

 nextproto := "ether"+sys->sprint("%4.4X",
 (int ethptr.data[12] << 8) |

 (int ethptr.data[13]));

 if ((fmtmod == nil) || (fmtmod->ID != nextproto))
 {
 fmtmod = load XFmt XFmt->BASEPATH +
 nextproto + ".dis";
 if (fmtmod == nil) continue;
 }

 (err, nil) := fmtmod->fmt(ethptr.data[14:], args);
}

return;
}

Compute a module
implementation file name,
based on Ethernet frame

nextproto field

Try to load an
implementation from the
file name computed (e.g.,

will be
ether0800.dis if
frame contained IP)

Decode frame, possibly
passing frame to further

filters

2898-023A Lecture 3

More Examples

• See book’s web page

http://www.ece.cmu.edu/~pstanley/ipwl/sourcecode/book-examples/

(remind me to show this to you in a browser, right now)

2998-023A Lecture 3

Limbo Language
Genealogy (abridged)

• Language-level “communication variables”, the channel
data type, is influenced by CSP, via Alef and Newsqueak

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

3098-023A Lecture 3

Limbo Language
Genealogy (abridged)

• Limbo’s module system is influenced by ML and Modula-2

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

ML
(Milner, Tofte, Harper, McQueen, 1990)

Modula-2
(Wirth, 1979)

Limbo

3198-023A Lecture 3

Limbo Language
Genealogy (abridged)

• Syntax is similar to “Algol Family” of languages, most
popular of which is probably C

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

ML
(Milner, Tofte, Harper, McQueen, 1990)

Modula-2
(Wirth, 1979)

Limbo

Pascal(Wirth, 1970)

Algol(Naur, Backus et al., 1958)

Limbo

C (Ritchie, 1970)

3298-023A Lecture 3

Limbo Language
Genealogy (abridged)

• Shares similarities in data types with CSP etc (channels),
ML (language level lists and operators), module types, C

Channels Module System Syntax Type System

CSP
(Hoare, 1978)

Newsqueak
(Pike, 1990)

Alef
(Winterbottom, 1992)

Limbo

ML
(Milner, Tofte, Harper, McQueen, 1990)

Modula-2
(Wirth, 1979)

Limbo

Pascal(Wirth, 1970)

Algol(Naur, Backus et al., 1958)

Limbo

C (Ritchie, 1970)

Limbo

3398-023A Lecture 3

Next Lecture

• More on Limbo, compilation, debugging, etc.

• Next week ADTs, types and the Dis VM (monday), fixed
point arithmetic formats and overview (wednesday)Fin.

