98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

Phillip Stanley-Marbell

pstanley@ece.cmu.edu

98-023A Lecture 3

Lecture Outline

* (next week: Limbo data types and the Dis VM)

98-023A Lecture 3

Course Outline : Syllabus

e Week |: Introduction to Inferno
e Week 2: Overview of the Limbo programming language

e Week 3:Types in Limbo

Week 4: Inferno Kernel Overview

Week 5: Inferno Kernel Device Drivers

T Neds T

e Week 7: C applications as resource servers: Built-in modules and device drivers

e Week 8: Case study | — building a distributed multi-processor simulator
e Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

e Week |0: Programing with threads, CSP

e Week | |: Debugging concurrent programs; Promela and SPIN

e Week |2: Factotum, Secstore and Inferno’s security architecture

e Week | 3: Case study || — Edisong, a distributed audio synthesis and sequencing engine

98-023A Lecture 3 ‘ 3

Schedule Update

* Changed topic for weeks 4 and 5

e Will be covering the Inferno kernel and device drivers, due to popular demand

* | will be out of town (out of the country) during week 6
e No class February |6 and February |8th

98-023A Lecture 3

The Limbo Programming
Language

* Limbo is a concurrent programming language

e language level support for inter-thread

* Language-level communication

e Based on ideas from Hoare’s Communicating Sequential Processes (C5SP)

* Features
o : compiler and VM cooperate to ensure this
o , but rather, employs a powerful module system
o (compile- and run-time type checking)

98-023A Lecture 3

Inferno System Structure

Limbo
Applications

Limbo Threads

Dis Virtual Machine

Built-in Modules

“#M”

Inferno
Sistem

vite LHvels Infermno Kernel

Hardware

98-023A Lecture 3

Inferno’s VM: Dis

* Applications compiled for execution on the Dis VM

* Dishasa
(contrast to the Java Virtual
Machine’s stack architecture)

but can support other languages

* WEe'll see more of this correspondence between Limbo
data types and Dis VM internals next week

98-023A Lecture 3

Hello World

implement HelloWorld;

include “sys.m’”;
include “draw.m”;

HelloWorld: module

init: fn(ctxt: ref Draw->Context, args: 1list of string);

init(ctxt: ref Draw->Context, args: list of string)

{
sys = load Sys Sys->PATH;

This 1s a comment
sys->print("Hello World!\n");

* Limbo module implementations (like above) usually placed in a file with suffix

 Compiled modules placed in (contain bytecode for execution on Dis VM)

98-023A Lecture 3 ‘ 8

Demo: Compiling and
running HelloVVorld

98-023A Lecture 3

Hello World Module

implement HelloWorld; «e—m — Module Name

include “sys.m”; .
include “draw.m”; € ———————— Various Includes

Module Type (i

. HeTlloWorld: module

S init(ctxt: ref Draw->Context, args: list of string)
o
: sys = load Sys Sys->PATH;

This i1s a comment
sys->print("Hello!\n”);

* Module interface definitions often placed in separate files by convention
e Module definitions define a new “type”
* Compiled modules in file contains this type information

* |value of a 10ad statement must match this type

98-023A Lecture 3

Interface vs.
Implementation

* Module interface defines a new type

* Module interface (type) can either be included inline, or

stored in a separate file and included
e Other modules which want to use eventual implementation will include this
header file

* Module implementation is an instance of this new type

* |mplementation source is in , and eventual compiled binary in a

98-023A Lecture 3

Modules

* Applications are structured as a collection of

e Component modules of an application are
and

e Each compiled program is a single module

e Any module can be loaded dynamically and used by another module
* Shell loads when instructed to, and “runs” it

e There is no static linking

init(ctxt: ref Draw->Context, args: 1list of string)

This 1s a comment
sys->print(”’Hello!\n”);

98-023A Lecture 3

Compiled module
(".d1S") contents

* Compiled modules contain only the code as defined in
source file

 Other modules used (e.g., for print) are not “compiled
in”, but are loaded dynamically, at runtime, from a
specified file

98-023A Lecture 3

Compiled module
(".d1S") contents

* Hel loWor 1d module only contains code to load Sys
module then do a module function call

I3

initictxt ¢ ref Draw->Context, args ¢ list of string)

1
TYs 3 SYS:
Thiz iz a comment
sys = load Sys Sysz->PATH:
syz—rprint{"Hello World ")+

"

ﬁ dizdump hello,dis

load Ofmpld, $0, 40(fp)

frame $1, 480Fp)

MoYp d(mpl, Z2(480Fp))

lea 440 Fp), 16430 Fp1)

mcall 480FpY, $0, 400Fp)

et

s+

98-023A Lecture 3

Demo: d1sdump and
Module manager —
Examining an executable’s
contents

98-023A Lecture 3

Demo (0bjdump -d on
a compiled C program)

Language Data lypes

* Basic types

. — 32-bit, signed 2’s complement notation

. — 64-bit, signed

. — 8-bit, unsigned

o — 64-bit IEEE 754 long float

. — Sequence of 16-bit Unicode characters

e Structured Types

° — Array of basic or structured types

o , — Grouping of data and functions

o — List of basic or structured data types, list of list, etc.
L

e Tuples

98-023A Lecture 3

Limbo Modules

* How do you know where to load module
implementation from ?

* Example:

smtp protocol independent access to an email server.

Smtp : module

open: fn(server : string) : (int, string);
sendmail: fn(fromwho: string,

towho: 1ist of string,
cc : list of string,
msg: 1list of string) : (int, string);

close the connection - returns (status, error string)
close: fn() : (int, string);

98-023A Lecture 3

Built-in Modules

e These are modules
= built into the
2
S| system,such as Sys
Limbo Threads EQ
g -
=1 ® Built-in modules are
T . .
implemented in C
Dis Virtual Machine
Built-in Modules * How are they
S = loaded since there
(X3 b3 r“ ° °
i S%| is no .dis file ?
Cecice Driver U
vite SHVELS Inferno Kernel * handle = Toad “$Name”;

Hardware

98-023A Lecture 3

The Sys Built-in Module

* This provides the link between Limbo application and
Inferno kernel / emulator facilities

e Provides facilities for I/O etc.

98-023A Lecture 3

More details on modules

e The “$Loader” built-in module
* Module signatures
e Module structure

* Generating C stubs from Limbo module definitions

o .. All of the above will be covered when we talk about Built-in Modules later in
the semester

98-023A Lecture 3

Dynamic Loading of
Modules

* Module type information is statically fixed in caller
module, but the actual implementation loaded at run
time is not fixed, as long as it type-checks

------ -'; $Sys |
+{ Bufio
o) ~{Ev } o Readdir | module (the command shell)
loads the : and other
o Filepat) modules at runtime. The
. — module loads other modules that
e it may need (e.g.,)
load operations load operation

(Al runtime) (At runtime)

98-023A Lecture 3

Dynamic loading
example:

* An extensible packet sniffer architecture

* Dynamically loads and unloads packet decoder modules
based on observed packet types

e All implementations of packet decoders conform to a given module type (module
interface difinition)

e File name containing

(e.g., ICMP packet inside Ethernet frame) , and loaded if
implementation is present

e New packet decoders at different layers of protocol stack can be added
transparently, even while Xsniff is already running!

98-023A Lecture 3

98-023A Lecture 3 24

Xsniff (1)

implement Xsniff;

include "sys.m";
include "draw.m";
include "arg.m";
include '"xsniff.m";

Xsniff Module Definition [
' DUMPBYTES : con 32;

Modules which will
be run from shell
must define

“Un1t” with this
verbose

sighature etherdump := O;
dumpbytes := DUMPBYTES;

init : fn(nil : ref Draw->Context, args : list of string);:

init(nil : ref Draw->Context, args : list of string)

{
n : int;
buf := array [Sys->ATOMICIO] of byte;

sys = load Sys Sys->PATH;
arg = load Arg Arg->PATH;

98-023A Lecture 3 25

Xsniff (2)

dev := "/net/ether0"”;
arg->init(args);

Command line argument parsing. Omitted...

Open ethernet device interface
tmpfd := sys->open(dev+"/clone", sys->OREAD);

Determine which of /net/ether0/nnn
n = sys->read(tmpfd, buf, Ten buf);
(nil, dirstr) := sys->tokenize(string buf[:n], " \t");
Open data interface
for Ethernet driver channel := int (hd dirstr); .
infd := sys->open(dev+sys->sprint("/%d/data", channel),
Sys-SORDWRY ;" |

sys->print("Sniffing on %s/%d...\n", dev, channel);
Open control tmpfd = sys->open(dev+sys->sprint("/%d/ct1",! channel),
interface for sys->ORPWR)-;------- '

Ethernet driver . . .
Get all packet types (put interface in promisc. mode)

sys->fprint(tmpfd, "connect -1");
sys->fprint(tmpfd, "promiscuous");

Spawn statement S S Spawn -new_thread w/..ref_to.opened .ethernet _device
creates new thread => spawn reader(infd, args);

from function

98-023A Lecture 3 26

Xsniff (3)

Compute a module
implementation file name,
based on Ethernet frame

nextproto field

Try to load an
implementation from the
file name computed (e.g.,

will be
if
frame contained IP)

Decode frame, possibly
passing frame to further
filters

~

reader(infd : ref Sys->FD, args : list of string)

n : int;
ethptr : ref Ether;
fmtmod : XFmt;

ethptr = ref Ether(array [6] of byte, array [6] of byte,
array [Sys->ATOMICIO] of byte,0);

while (1)

{
n = sys->read(infd, ethptr.data, len ethptr.data);

ethptr.pktlen
ethptr.rcvifc
ethptr.dstifc

n - len ethptr.rcvifc;
ethptr.datal[0:6];
ethptr.data[6:12];

[N e el T T L T e ok e
1 1

nextproto := "ether"+sys->sprint("%4.4X",
(int ethptr.data[l2] << 8) |
(1nt ethptr.datal[1l3]));

' §if ((fmtmod == nil) || (fmtmod->ID != nextproto)) |
{
fmtmod = Toad XFmt XFmt->BASEPATH +
nextproto + ".dis";
if (fmtmod == nil) continue;

return;

98-023A Lecture 3 27

More Examples

* See book’s web page

http://www.ece.cmu.edu/~pstanley/ipwl/sourcecode/book-examples/

(remind me to show this to you in a browser, right now)

98-023A Lecture 3

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System

(Hoare, 1978)

(Pike, 1990)

\

(Winterbottom, 1992)

\

* Language-level “communication variables”, the channel
data type, is influenced by CSP, via Alef and Newsqueak

98-023A Lecture 3 \ 29

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System
(Hoare, 1978) (Milner, Tofte, Harper, McQueen, 1990)

(Pike, 1990) (Wirth, 1979)

(Winterbottom, 1992) /

\

* Limbo’s module system is influenced by ML and Modula-2

98-023A Lecture 3

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System

(Naur, Backus et al., 958)
(Hoare, 1978) (Milner, Tofte, Harper, McQueen, 1990) l
(Ritchie, 1970)

(Pike, 1990) (Wirth, 1979)
3 (Wirth, 1970)

(Winterbottom, 1992) / l

\

e Syntax is similar to “Algol Family” of languages, most
popular of which is probably C

98-023A Lecture 3

Limbo Language
Genealogy (abridged)

Channels Module System Syntax Type System

(Naur, Backus et al., 958)
(Hoare, 1978) (Milner, Tofte, Harper, McQueen, 1990) l
(Ritchie, 1970)

(Pike, 1990) (Wirth, 1979)
3 (Wirth, 1970)

(Winterbottom, 1992) / l

\

e Shares similarities in data types with CSP etc (channels),
ML (language level lists and operators), module types, C

98-023A Lecture 3 \ 32

Next Lecture

* More on Limbo, compilation, debugging, etc.

* Next week ADTs, types and the Dis VM (monday), fixed
point arithmetic formats and overview (wednesday)

Fn.

98-023A Lecture 3 \ 33

