
98-023A Lecture 2

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 2

• Lecture 1 review

• Abstraction and Names

• Resources as files in Inferno

• (next 2 lectures: Introduction to Limbo, Limbo data
types and the Dis VM)

Lecture Outline

398-023A Lecture 2

• Inferno
• An operating system

• Limbo
• A programming language for developing applications for Inferno

• Dis
• Inferno abstracts away the hardware with a virtual machine, the Dis VM

• Limbo programs are compiled to bytecode for execution on the Dis VM

• Plan 9
• A research operating system, being actively developed at Bell Labs and elsewhere

• A direct ancestor of Inferno

Lecture 1 Review:
Terminology

498-023A Lecture 2

• Like any other traditional OS, Inferno runs directly over
bare hardware (PowerPC, Intel x86, SPARC, MIPS, ARM,
more...)

• Also available as an emulator which runs over many
modern operating systems (Windows, Linux, *BSD,
Solaris, IRIX, MacOS X)

• Emulator provides interface identical to native OS, to
both users and applications
• Filesystem and other system services, applications, etc.

• The emulator virtualizes the entire OS, including filesyste, network stack, graphics
subsystem — everything — not just code execution (e.g., in Java Virtual
Machine)

Lecture 1 Review:
Inferno

598-023A Lecture 2

Native (i.e., running directly over
hardware)

Hosted (i.e., emulator)

Lecture 1 Review:
Inferno System Architecture

698-023A Lecture 2

Lecture 1 Review:
Inferno System Architecture

Today

Next
Week

Spend time on this
if there is demand

{
{

798-023A Lecture 2

Course Outline : Syllabus
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Abstraction as a design tool, Names, Resources as files Inferno Kernel Overview

• Week 5: 9P and Styx, Resources as files and Limbo threads Inferno Kernel Device Drivers

• Week 6: C applications as resource servers: Built-in modules and device drivers

• Week 7: Case study I — building a distributed multi-processor simulator

• Week 8: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 9: Programing with threads, CSP

• Week 10: Debugging concurrent programs; Promela and SPIN

• Week 11: Factotum, Secstore and Inferno’s security architecture

• Week 12: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

?

?

898-023A Lecture 2

998-023A Lecture 2

• Resource abstraction is a good thing
• Operating systems abstract away CPU, disk, network as system calls

• System call abstraction is unfortunately not easily scalable across, e.g., network
(well, there’s RPCs, but these are seldom uniform)

• Files are one abstraction
• Abstraction for bytes on disk (or elsewhere)

• Nothing inherently tying the concept of files to bytes on disk

• Except of course, the operating system / file server’s implementation

Resource abstraction

1098-023A Lecture 2

Question to mull on

• What happens when a user at a terminal echos the
string “hello” into the file /tmp/myfile

• At some point file is opened via an open syscall ?

• At some point a write syscall happens ?

• Strings goes into the OS buffer cache ?

• String gets flushed to magnetic disk ?

1198-023A Lecture 2

1298-023A Lecture 2

• Can think of files as names with special properties
• Size

• Access permissions

• State (creation/modification/access time)

• These properties are largely a historical vestige — we could imagine files with more
sophisticated ‘types’

• Files are just an abstraction
• There’s nothing inherently tying files (i.e., names) to bytes on disk

• Association with disk files just happens to be most common use

Files = Names

1398-023A Lecture 2

• Since files are so easy to deal with, can we represent all
resources as names (files) in a name space ?
• Process control ?
• Network ?
• Graphics ?

• This file/name interface abstraction is not inherently
more expensive than, say, a system call interface

• If we had a simple protocol for accessing files (names)
over network, we could build interesting distributed
systems, with resources (files, i.e., names) spread across
network

Resources as files

1498-023A Lecture 2

• Builds on the ideas developed in the Plan 9 Operating
System
• Most system resources represented as names (files) in a hierarchical name space

• Simple protocol (“Styx”) for accessing names, whether local or over network

• These names provide abstraction for resources (such as those available in, e.g., UNIX,
via system calls)
• Graphics
• Networking
• Process control

• Implications
• Access local and remote resources with the same ease as local/remote files
• Restrict access to resources by restricting access to portions of name space
• name space is “per process”, so different programs can have different views of

available resources

Inferno : Resources as files

1598-023A Lecture 2

• Networking
• Network protocol stack represented

by a hierarchy of names

• Graphics
• Access to drawing and image

compositing primitives through a
hierarchy of names

Resources as files (names)
; du -a /net
0 /net/tcp/0/ctl
0 /net/tcp/0/data
0 /net/tcp/0/listen
0 /net/tcp/0/local
0 /net/tcp/0/remote
0 /net/tcp/0/status
0 /net/tcp/0
0 /net/tcp/clone
0 /net/tcp/
0 /net/arp
0 /net/iproute
...

; cd /dev/draw
; lc
new
; tail -f new &
1 0 3 0 0 640 480
; lc
1/ new
; cd 1
; lc
ctl data refresh

1698-023A Lecture 2

• Connect to a remote machine and attach its name
space to the local one

• Union remote machine’s /prog into local /prog

• ps will now list processes running on both machines, because it works entirely
through the /prog name space

• Can now simultaneously debug/control processes running on both machines

Example /prog : process control

; mount net!www.gemusehaken.org /n/remote

; bind -a /n/remote/prog /prog

; ps
 1 1 pip release 74K Sh[$Sys]
 7 7 pip release 9K Server[$Sys]
 8 1 pip alt 9K Cs
 9 9 pip release 13K Virgild[$Sys]
 10 7 pip release 9K Server[$Sys]
 11 7 pip release 9K Server[$Sys]
 15 1 pip ready 73K Ps[$Sys]
 1 1 abby release 74K Sh[$Sys]
 8 1 abby release 73K SimpleHTTPD[$Sys]

1798-023A Lecture 2

Question to mull on

• Contrast the behavior of /prog in Inferno to /proc
in Unix
• The ps utility does not work exclusively through /proc

• Debuggers like GDB do not debug processes exclusively through /proc

• ps and gdb cannot be directed to list processes on a remote machine or debug a
process on a remote machine, even if they (somehow) have access to the /proc
filesystem remotely

• Can you mount and see the /proc of a remote system, by, say, AFS ? NFS ?

Incidentally, /proc in Unix was done by T. J. Killian, who was affiliated with the Plan 9
development group. See T. J. Killian, “Processes as Files”. In Proceedings of the 1984 Usenix
Summer Conference, pp. 203 - 207. Salt Lake City, UT.

1898-023A Lecture 2

Connecting to remote systems:
the mount(1) utility

• Connect to remote system, attach (union) their
filesystem name space to local name space

• Manner in which union happens is determined by flags
• -b (MBEFORE flag in Limbo module version)

• -a (MAFTER flag in Limbo module version)

• -c (MCREATE in Limbo module version)

• Also, whether or not to authenticate connection, -A (Mount uses a previously
saved certificate in authentication, which must have been previously obtained from a
certificate authority)

1998-023A Lecture 2

Demo

2098-023A Lecture 2

• Unix /dev/ : Accessing device drivers via filesystem
• Device special files created by mknod system call, linked to in-kernel device drivers

• Properties of driver serving device special file manipulated by ioctl system call
• Example: Can write an archive to a tape drive by writing to /dev/rst0, but

need to perform an ioctl system call to write the end-of-tape mark

• Example: Can play audio by writing PCM encoded audio data directly to
/dev/audio or /dev/sound, but can only change sample rate via ioctl

• Inferno: files used for both resource access and control
• /dev/audio for audio data, /dev/audioctl for parameter control

• /net/tcp/clone to allocate resources for a new TCP connection, /net/
tcp/n/ (an entire per-connection directory of “synthetic files”, allocated when /net/tcp/
clone is read) for controlling connection and sending data

• Synthetic files / directories can be created, dynamically, by user-level applications

Access and Control via
Name Space

2198-023A Lecture 2

• What happens when names are accessed ?
• Operations on a single name: open, read, write

• Traversing hierarchies of names

Accessing Names

2298-023A Lecture 2

In-kernel/emulator
component called “#M”,

to be described next

In-kernel/emulator
component called “#s”,
to be described when

we cover channels

2398-023A Lecture 2

Inferno System Structure

Built-in Modules

“#M”

2498-023A Lecture 2

• Mount device delivers file operations to appropriate local device driver
via subroutine calls

• If file being accessed is from an attached namespace, deliver styx
messages to remote machine’s mount driver

Accessing Name Space Entries:
The Mount Device, #M

Inferno Kernel Internal
Chan* structure

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Eventually end up as in-
kernel subroutine calls to
appropriate device driver

Is name part of a remotely
attached name space ?

Send Styx messages (over
“network”)

2598-023A Lecture 2

• Mount driver also converts Styx messages coming in over the
network into calls to local device drivers

• Any entity that can speak the Styx protocol can take advantage of
system resources and hardware (subject to permissions / auth)
• This is a good thing for building distributed systems

Converting Styx messages to
local subroutine calls

Inferno Kernel Internal
Chan* structure

System Call Interface (open, read, etc.)

Mount Device

Inferno Kernel / Emulator Core
Subroutine calls

Received Styx
messages

2698-023A Lecture 2

• 14 message types
• Initiate connection (Attach)
• Traversing hierarchy (Clone, Walk)
• Access, creation, read, write, close, delete (Open, Create, Read, Write, Close, Remove)
• Retrieve/set properties (Stat, Wstat)
• Error (Error)
• End connection (Flush)
• No-op (Nop)

• Easy to implement on, say, an 8-bit microcontroller

Styx in a Nutshell

Styx

Hardware R
S-

23
2

Styx Messages

This device can now access network
protocol stack, process control, display

device etc. of the connected workstation

Real world example: Styx on Lego Rcx
Brick (Hitachi H8 microcontroller, 32K

RAM, 16K ROM)

2798-023A Lecture 2

• Interloper (ipwl book, pg. 192) is a simple program that lets you
observe Styx messages/local procedure calls generated by
name space operations

Example : Snooping on Styx

; interloper
Message type [Tattach] length [61] from MOUNT --> EXPORT
Message type [Rattach] length [13] from EXPORT --> MOUNT
; cd /n/remote
; pwd
Message type [Tclone] length [7] from MOUNT --> EXPORT
Message type [Rclone] length [5] from EXPORT --> MOUNT
Message type [Tstat] length [5] from MOUNT --> EXPORT
Message type [Rstat] length [121] from EXPORT --> MOUNT
Message type [Tclunk] length [5] from MOUNT --> EXPORT
Message type [Rclunk] length [5] from EXPORT --> MOUNT
/n/#/
;

2898-023A Lecture 2

Intercepting Styx Messages

2998-023A Lecture 2

Demo: Interacting with a Styx
server written in C (/tools/styxtest/)

3098-023A Lecture 2

Reading

• Required Reading
• “The Styx Architecture for Distributed Systems” (http://cmu.edu/blackboard)

also available at http://www.vitanuova.com/inferno/papers/styx.html)

• Relevant chapter in “Inferno Programming with Limbo”
• Chapter 8

3198-023A Lecture 2

Next Week

• We’ll actually start writing / looking at code

• Introduction to Limbo (monday)

• Limbo data types and the Dis Virtual Machine (one week later)

Fin.

