98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

Phillip Stanley-Marbell

pstanley@ece.cmu.edu

98-023A Lecture 2

Lecture Outline

e |Lecture | review
o and Names
o in Inferno

* (next 2 lectures: Introduction to Limbo, Limbo data
types and the Dis VM)

98-023A Lecture 2

Lecture | Review:
Terminology

e An operating system
e A programming language for developing applications for Inferno

e |nferno abstracts away the hardware with a virtual machine, the Dis VM

e Limbo programs are compiled to bytecode for execution on the Dis VM

e A research operating system, being actively developed at Bell Labs and elsewhere

e A direct ancestor of Inferno

98-023A Lecture 2

Lecture | Review:
Inferno

* Like any other traditional OS, Inferno
(PowerPC, Intel x86, SPARC, MIPS,ARM,

more...)

° which runs over many

modern operating systems (Windows, Linux, *BSD,
Solaris, IRIX, MacOS X)

¢ , TO

both users and applications
e Filesystem and other system services, applications, etc.

e The emulator virtualizes the entire OS, including filesyste, network stack, graphics
subsystem — everything — not just code execution (e.g., in Java Virtual
Machine)

98-023A Lecture 2

Lecture | Review:

Inferno System Architecture

L a}
—
o=
iy i
. = E
Limbo Threads S
'__]'-l-a
L
ol
T
Dis Virtual Machine
St}rx
. _ Driver Call Interface | © =
Driver Piles?'stE{n J_nt?rface e.5. drawattach() E &
e Jdev/ drasw HE'E“
Dies B =
vice Drivers
Inferno Kernel
Hardware

(i.e., running directly over
hardware)

[¥a]
-
oS
il
=E
Limbo Threads =L
e~
L
T
Dis Virtual Machine
.
Styx .
, . =
. . . Driver Call Interface | =
Driver Filesystem Interface |~ of ovarach) | 3
E.a._.'LE'I._.-LlSITp"._.- LLJ
Device Drivers
Host OS System Call Interface E
g
Host Oa
]
e Do ‘ Host OS Kemel =
Hardware

(i.e., emulator)

98-023A Lecture 2

5

Lecture | Review:
Inferno System Architecture

Next
Week

Limbo
Applications

Styx
Today Driver Filesystem Interface Dy (G e s

; f f e drawattach()
ez Jdev/draw;

Inferno
Sistem

Spend time on this
if there is demand —

98-023A Lecture 2

Course Outline : Syllabus

e Week |: Introduction to Inferno
e Week 2: Overview of the Limbo programming language

e Week 3:Types in Limbo
?

o Week 4: i i , , Inferno Kernel Overview

?
e Week 5: 9Pand-StyxResources-as-files-and-imbe-threads Inferno Kernel Device Drivers

e Week 6: C applications as resource servers: Built-in modules and device drivers

e Week 7: Case study | — building a distributed multi-processor simulator
e Week 8: Platform independent Interfaces: Limbo GUIs; Project Update

e Week 9: Programing with threads, CSP

e Week |0: Debugging concurrent programs; Promela and SPIN

e Week | |: Factotum, Secstore and Inferno’s security architecture

e Week 12: Case study Il — Edisong, a distributed audio synthesis and sequencing engine

98-023A Lecture 2 ‘ v

Abstract Up

Gnaw at tree base
until falls
drag felled tree
to stream
Pile 1n location
Cross on downhill side
of location
[f wet. repeat

Fell tree
Pile resulting logs
in stream
Repeat until water
stops flowing

Build dam there!

Compile Down

98-023A Lecture 2

Resource abstraction

e Operating systems abstract away CPU, disk, network as system calls

e System call abstraction is unfortunately not easily scalable across, e.g., network
(well, there’s RPCs, but these are seldom uniform)

e Abstraction for bytes on disk (or elsewhere)
e Nothing inherently tying the concept of files to bytes on disk

e Except of course, the operating system / file server’s implementation

98-023A Lecture 2

Question to mull on

* What happens when a user at a terminal echos the
string “hello” into the file /tmp/myfile

e Strings goes into the OS buffer cache !

e String gets flushed to magnetic disk ?

98-023A Lecture 2

98-023A Lecture 2

Files = Names

e Can think of

e Size
e Access permissions
e State (creation/modification/access time)

e These properties are largely a historical vestige — we could imagine files with more
sophisticated ‘types’

e There’s nothing inherently tying files (i.e., names) to bytes on disk

e Association with disk files just happens to be most common use

98-023A Lecture 2

Resources as files

* Since files are so easy to deal with,

e Process control ?
e Network ?
e Graphics?

e This file/name interface abstraction is
than, say, a system call interface

e |f we had a

, we could build interesting distributed

systems, with resources (files, i.e., names) spread across
network

98-023A Lecture 2

Inferno : Resources as files

* Builds on the ideas developed in the Plan 9 Operating

System

o (files) in a hierarchical

e Simple protocol (“Styx”) for accessing names, whether local or over network

e These (such as those available in, e.g., UNIX,
via system calls)
e Graphics

e Networking
e Process control

* Implications
e Access local and remote resources with the same ease as local/remote files

e Restrict access to resources by restricting access to portions of name space

* name space is “‘per process”, so different programs can have different views of
available resources

98-023A Lecture 2

Resources as files (names)

...

e Networking - durainet
e Network protocol stack :

® Graphlcs - cd /dev/draw
e Access to Ic
primitives '

' tail -f new &
5 ‘e

cd 1
A (o

98-023A Lecture 2

Example : process control

e Connect to a remote machine and attach its name
space to the local one

* Union remote machine’s into local
. will now list processes running on both machines, because it works entirely
_____ through the /prog name space

1 1 abby release 74K Sh[$Sys]

e Can now simultaneously debug/control processes running on both machines

98-023A Lecture 2

Question to mull on

e Contrast the behavior of /prog in Inferno to /proc
in Unix

The ps utility does not work exclusively through /proc
Debuggers like GDB do not debug processes exclusively through /proc

ps and gdb cannot be directed to list processes on a remote machine or debug a

process on a remote machine, even if they (somehow) have access to the /proc
filesystem remotely

Can you mount and see the /proc of a remote system, by, say, AFS ? NFS ?

Incidentally, /proc in Unix was done by T. . Killian, who was affiliated with the Plan 9
development group. See T. J. Killian, “Processes as Files”. In Proceedings of the 1984 Usenix
Summer Conference, pp. 203 - 207. Salt Lake City, UT.

98-023A Lecture 2

Connecting to remote systems
the nount (1) utility

* Connect to remote system, attach (union) their
filesystem name space to local name space

* Manner in which union happens is determined by flags

e -b (MBEFORE flag in Limbo module version)
e —a (MAFTER flag in Limbo module version)
* —c (MCREATE in Limbo module version)

e Also, whether or not to authenticate connection, —A (Mount uses a previously
saved certificate in authentication, which must have been previously obtained from a

certificate authority)

98-023A Lecture 2

Demo

98-023A Lecture 2

Access and Control via
Name Space

 Unix /dev/ : Accessing device drivers via filesystem

created by mknod system call,

of driver serving device special file ioctl
e Example: Can write an archive to a tape drive by writing to /dev/rst0, but
need to perform an ioctl system call to write the end-of-tape mark

o Example: Can play audio by writing PCM encoded audio data directly to
/dev/audio or /dev/sound, but can only change sample rate via ioctl

e |nferno:files used for both resource access and control

/dev/audio for audio data, /dev/audioctl for parameter control

/net/tcp/clone to allocate resources for a new TCP connection, /net/
tcp/n/ (an entire per-connection directory of “synthetic files”, allocated when Inet/tcp/
clone is read) for controlling connection and sending data

Synthetic files / directories can be created, dynamically, by user-level applications

98-023A Lecture 2 \ 20

Accessing Names

* What happens when names are accessed !

e Operations on a single name:

e Traversing hierarchies of names

98-023A Lecture 2

Applications / Users

write read write read
In-kernel/emulator
component called “#M”, >
to be described next o o
Disk File Synthetic File
__/_ f
A
In-kernel/emulator
component called “#s”,
to be described when
we cover channels
\ / .
(These accesses never go to disk)
<l i

Disk

—— e

98-023A Lecture 2

Inferno System Structure

Limbo
Applications

Limbo Threads

Dis Virtual Machine

Built-in Modules

“#M”

Inferno
Sistem

vite LHvels Infermno Kernel

Hardware

98-023A Lecture 2

Accessing Name Space Entries:
The Mount Device, #M
Is name part of a remotely

-- attached name space ?
, (over
- i ————————————— ; “network”)

Inferno Kernel Internal
Chan* structure

—— e — e — — — — — — — — — — — — — —_—

Eventually end up as in-

ferno Kernel / Emulator Core
kernel

¢ Mount device

* If file being accessed is from an attached namespace,

98-023A Lecture 2

Converting Styx messages to
local subroutine calls

Received Styx

L et . messages
: 4 :IIIIIIIIIII

Inferno Kernel Internal
Chan* structure

—— e — e — e — — — — —— — — — — — ———

Subroutine calls

e Mount driver also

* Any entity that can speak the Styx protocol can take advantage of

system resources and hardware (subject to permissions / auth)
e This is a good thing for building distributed systems

98-023A Lecture 2

Styx in a Nutshell

* |4 message types

e |nitiate connection (Attach)

e Traversing hierarchy (Clone, Walk)

e Access, creation, read, write, close, delete (Open, Create, Read, Write, Close, Remove)
e Retrieve/set properties (Stat, Wstat)

e Error (Error)

e End connection (Flush)

e No-op (Nop)

* Easy to implement on, say, an 8-bit microcontroller

<X Messages

Real world example: Styx on Lego Rcx
Brick (Hitachi H8 microcontroller, 32K
RAM, 16K ROM)

98-023A Lecture 2 \ 26

Example : Snooping on Styx

o (ipwl book, pg. 192) is a simple program that lets you
observe Styx messages/local procedure calls generated by
name space operations

; interloper
Tattach
Rattach

. ¢d /n/remote

; pwd
Tclone
Rclone
Tstat
Rstat
Tclunk
Rclunk

98-023A Lecture 2

Intercepting Styx Messages

Receive requests for entries in the
name space and cause the generation

. of Stifx messages on Hie pipe
Export name space onto pipe T =ty 8 Pi
{ mount () }

[e:-r;pl:::rt{:lw i

write () read ()
—f xfreZm() j—-' j
s () -—f xfrmiZe () j— () (

98-023A Lecture 2

Demo: Interacting with a Styx
Server Written in C (/ t ool s/ styxtest/)

98-023A Lecture 2

Reading

* Required Reading

e “The Styx Architecture for Distributed Systems” (http://cmu.edu/blackboard)
also available at http://www.vitanuova.com/inferno/papers/styx.html)

* Relevant chapter in “Inferno Programming with Limbo™

e Chapter 8

98-023A Lecture 2

Next Week

* We'll actually start writing / looking at code

e Introduction to Limbo (monday)

e Limbo data types and the Dis Virtual Machine (one week later)

98-023A Lecture 2

