98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

Phillip Stanley-Marbell

pstanley@ece.cmu.edu

98-023A Lecture 19

Lecture Outline

e Brief Review of CSP

¢ |Introduction to SPIN and Promela

98-023A Lecture 19

Syllabus

e Week |: Introduction to Inferno
e Week 2: Overview of the Limbo programming language
e Week 3:Types in Limbo
e Week 4: Inferno Kernel Overview
e Week 5: Inferno Kernel Device Drivers
e Week 6: NO CLASS
e Week 7: C applications as resource servers: Built-in modules and device drivers
e Week 8: Case study | — building a distributed multi-processor simulator
e Week 9: Platform independent Interfaces: Limbo GUIs; Project Update
e Week |0: Programing with threads, CSP
» e Week | |: Debugging concurrent programs; Promela and SPIN
e Week |2: Factotum, Secstore and Inferno’s security architecture

e Week | 3: Case study || — Edisong, a distributed audio synthesis and sequencing engine

98-023A Lecture 19 ‘ 3

CSP Review: Coroutines

e Squash in CSP

X :: *[c: character; west?c —

c # asterisk — east!c Cc = asterisk — west?c;
'c + asterisk — eastlasterisk; east!c
c = asterisk — eastluparrow]

98-023A Lecture 19

CSP Review: Coroutines

NSt sk —> CasT r’C_\
Gl Cammd@aiEn Se. — > st C

—

- | o Tt | "
s C ff*¥({§l’bf;i _‘_9 rﬁl Eﬁ-éd . i} 9‘114‘4/11"& e |
i a jh}f.f;r\ —— Enst l (A FC’J/;«F*;JJ

R g

—

)
|

98-023A Lecture 19 5

Example: Coroutines

e Squash in Limbo Squash in CSP (again)
for (;;) X ool
1

: . ?c —
C :=<- west: c: character; west?c

case C

. c = asterisk —
asterisk =>

west?c;
C =<- west,; [
case C
1 c = asterisk -
asterisk => east!uparrow
east <-= uparrow;

*o=> c # asterisk —
east <-= asterisk; eastlasterisk;
east <-= C; east!c

}]
£ >
east <-= C: c # asterisk — east!c

98-023A Lecture 19 ‘ 6

Designing Concurrent
Applications

* Something to think about : Why is it often said that
“the FreeBSD networking stack is good” :

e Designing concurrent applications is hard
e Many different things happening at the same time (obviously)
e Difficult even with a firm specification of desired behavior
e Even worse, what is a “firm specification” ??

e |n many cases, people “tune” the implementation of complex concurrent
applications until they “get it right”

98-023A Lecture 19

Designing Concurrent
Applications : Specification

* How do you specify behaviors ?

e You'll need to be able to specify the primitive operations

e Primitive operations in real programs (recall CSP lectures): :
, , and

* How do you specify the concurrent composition of
behaviors

e You'll need to be able to specify how to create instances of different behaviors

e Specify how instances are interleaved or that you don’t care, and let system
choose random interleavings

98-023A Lecture 19

[From “Tutorial: Design and Validation of Protocols” G.]. Holzmann, 1991]

1 The protocol defines a simplex data-transfer channel, 1.e., 1t
2 will pass data 1in only one direction, from sender to receiver.
3 Control information, however, flows 1n both directions. It 1s
4 assumed that the system has perfect error detection.
5 To each message sent from A to B we attach an extra bit called
6 the alternation bit. After B receives the message it decides 1f
7 the message 1s error-free. It then sends back to . a
a8 verification message, consisting of a single wverify bit,
9 indicating whether or not the i1mmediately preceding A to B
10 message was error-free. After A receives this verification, one
11 of three possibilities hold:
12 1. The A to B message was good
13 Z. The A to B message was bad
14 3. A cannot tell if the A to B message was good or bad
15 because the verification message (sent from B to A) was 1in error
16 In cases 2 and 3 A resends the same A to B message as before. In
17 case 1 A fetches the next message to be sent, and sends it,
18 inverting the setting of the alternation bit with respect te the
19 previous A to B message.
20 Whenever B receives a message that is not in error 1t compares
21 the alternation bit of this new message to the alternation bit of
22 the most recent error-free reception. If the alternation bits
23 are equal the new message 1s not accepted. The new message 1s
24 accepted only 1f the +two alternation bits differ. The
25 verification messages from B to A indicate error-free reception
26 independently of the acceptance of the messages.
27 Initialization of this scheme depends upon A and B agreeing on an
28 initial setting of the alternation bit. This is accomplished by
29 an A to B message whose error-free reception (but not necessarily
30 acceptance) forces B’s settinag of the alternation bit. Multiple
31 receptions of such a message cannct do harm.
32 This protocol has the property that every message fetched by A is
33 received error-free at least once and accepted at most once by B.

98-023A Lecture 19

Promela

* Promela is a language for modeling systems to be
verified by the SPIN model checker

* Promela is a specification language

e You use it to describe a behavior (e.g., a protocol)
e |ets you specify computation (very basic), sequencing, choice and /O

e language primitives are very similar to primitives provided by CSP

98-023A Lecture 19

SPIN

* SPIN is a tool for automatically validating Promela
specifications

* SPIN :Simple Promela INterpreter

* Has a large amount of theory behind it that we won'’t
go into

98-023A Lecture 19

Example

#define NUMCHANS 6
#define NUMSLAVES 5
#define SAMPLEDCHAN 5

mtype = {SAMPLE, SAMPLED};
chan netseg[NUMCHANS] = [0] of {mtype};

proctype slave(byte my_id)

{
byte got_sample;
got_sample = O;
do
:: netseg[my_1d]?SAMPLE -> got_sample = 1;
:: got_sample -> netseg[SAMPLEDCHAN] ! SAMPLED;
got_sample = O;
od
}
proctype master()
{
}
init
{
run slave(0); run slave(l);
run slave(2); run slave(3);
run slave(4); run master();
}

98-023A Lecture 19

Using SPIN

e Perform random simulation of behavioral model

e SPIN can perform random or guided simulation of the behavioral model, with
random interleavings of the different concurrent behaviors in model

* Verify properties specified in Linear Temporal Logic (LTL)

e Properties and invariants can be specified as LTL formulae

e Scenarios where these properties can be violated will be caught and example
activations shown

98-023A Lecture 19

Message

Sequence
Chart

<waiting>

master:6
1!SAMPLE
I n 11SAMPLE
slave:
1?SAMPLE ¢
2! SAMPLE | 21savpLE
31SAMPLE 31SAMPLE
slave:4
4?SAMPLE
5?SAMPLE
6! SAMPLED i el 6?SAMPLED
—
6?SAMPLED
— 6! SAMPLED
6! SAMPLED)| 62SAMPLED
6! SAMPLED 6 ! SRMPLED)| 62SAMPLED
— — 6! SAMPLED [-
6! SAMPLED p|625AMPLED
— 1!SAMPLE
1?SAMPLE < 1!SAMPLE
2?SAMPLE 2!SAHPLE 21 SAMPLE
3?SAMPLE I{ 3! SAMPLE 31SAMPLE
—— 41SAMPLE
4?SAMPLE < i 4!SAMPLE
— 51! SAMPLE
5?SAMPLE 51SAMPLE
6 ! SAMPLED 6 ! SRMPLED)| 62SAMPLED
— — 6! SAMPLED [
6! SAMPLED 6?SAMPLED
6! SAMPLED 6 ! SRMPLED)| 62SAMPLED
6 ! SAMPLED 6 | SAIPLED) 6?SAMPLED
— ——— 6!SAMPLED
6! SAMPLED 6?SAMPLED
¢ 1!SAMPLE |
1?SAMPLE (¢ 1!SAMPLE
2?SAMPLE I{ 2! SAMPLE 21 SAMPLE
]
3?SAMPLE < 3!SAMPLE , 3!SAMPLE
?SAMPLE |¢ 2 !SAPLE 41SAMPLE
4? q !
51SAMPLE
6! SAMPLED 6?SAMPLED
— 6! SAMPLED
6! SAMPLED } 6?SAMPLED
—— — 61SAMPLED .
6 ! SAMPLED)| 625AMPLED
6 ! SAMPLED 6! SAITPLED)| 62SAMPLED
— 6! SAMPLED 4
6! SAMPLED p|62samPLED
—— 11SAMPLE
1?SAMPLE < ne 1!SAMPLE
2?SAMPLE < 2! SAMPLE 21 SAMPLE
— 31SAMPLE
3?SAMPLE |< 31SAMPLE
41 SAMPLE
41SAMPLE
S7SAMPLE oo L I samPLE
6! SAMPLED } 6?SAMPLED
—— — 6! SAMPLED .
6 ! SAMPLED p{625AMPLED
6! SAMPLED 6 ! SRMPLED)| 62SAMPLED
— —— 6! SAMPLED
6! SAMPLED 6?SAMPLED
— ———— 6!SAMPLED
6! SAMPLED 6?SAMPLED
— 11SAMPLE —
1?SAMPLE (¢ 11SAMPLE
AMPLE |< 2!SRMPLE 2! SAMPLE
3?SAMPLE I{ 3!SAMPLE 31SAMPLE
1
4?SAMPLE < 2 !SAMPLE 41SAMPLE
51SAMPLE
<waiting>
<waiting>
<waiting>
<wa ng>

98-023A Lecture 19

SPIN Demo

* You can do everything from the command line

e Xspin is a graphical front end to spin

98-023A Lecture 19

Handouts

e “Communicating Sequential Processes”; C.AR. Hoare,
Communications of the ACM,Volume 21, Number 8, 1978

€6 . ’
¢ Usmg SPIN , Gerard J. Holzmann, Plan 9 Documents,Volume 2, available on
the web at http://plan9.bell-Tabs.com/sys/doc/index.htmT

98-023A Lecture 19

Next

* Next lecture: More depth on Promela and SPIN (ABP
protocol example)

* Next week: Inferno’s security architecture

98-023A Lecture 19

L.

98-023A Lecture 19

