
98-023A Lecture 19

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 19

• Brief Review of CSP

• Introduction to SPIN and Promela

Lecture Outline

398-023A Lecture 19

Syllabus
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS

• Week 7: C applications as resource servers: Built-in modules and device drivers

• Week 8: Case study I — building a distributed multi-processor simulator

• Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 10: Programing with threads, CSP

• Week 11: Debugging concurrent programs; Promela and SPIN

• Week 12: Factotum, Secstore and Inferno’s security architecture

• Week 13: Case study II — Edisong, a distributed audio synthesis and sequencing engine

498-023A Lecture 19

CSP Review: Coroutines

• Squash in CSP

X :: *[c: character; west?c →
[c ≠ asterisk → east!c c = asterisk → west?c;
[c ≠ asterisk → east!asterisk; east!c
 c = asterisk → east!uparrow]

]
]

598-023A Lecture 19

CSP Review: Coroutines

698-023A Lecture 19

Example: Coroutines
• Squash in Limbo

for (;;)
{
 c :=<- west;
case c
{
asterisk =>
c =<- west;
case c
{
asterisk =>
east <-= uparrow;

* =>
east <-= asterisk;
east <-= c;

}
* =>
east <-= c;

}
}

X ::*[

c: character; west?c →

[c = asterisk →
west?c;
[

c = asterisk →
east!uparrow
 c ≠ asterisk →
east!asterisk;
east!c

]

 c ≠ asterisk → east!c
]

]

Squash in CSP (again)

798-023A Lecture 19

Designing Concurrent
Applications

• Something to think about : Why is it often said that
“the FreeBSD networking stack is good” ?

• Designing concurrent applications is hard

• Many different things happening at the same time (obviously)

• Difficult even with a firm specification of desired behavior

• Even worse, what is a “firm specification” ??

• In many cases, people “tune” the implementation of complex concurrent
applications until they “get it right”

898-023A Lecture 19

Designing Concurrent
Applications : Specification

• How do you specify behaviors ?
• You’ll need to be able to specify the primitive operations

• Primitive operations in real programs (recall CSP lectures): Computation,
Sequencing, Choice, Repetition and I/O

• How do you specify the concurrent composition of
behaviors
• You’ll need to be able to specify how to create instances of different behaviors

• Specify how instances are interleaved or that you don’t care, and let system
choose random interleavings

998-023A Lecture 19

[From “Tutorial: Design and Validation of Protocols” G. J. Holzmann, 1991]

1098-023A Lecture 19

Promela

• Promela is a language for modeling systems to be
verified by the SPIN model checker

• Promela is a specification language
• You use it to describe a behavior (e.g., a protocol)

• Lets you specify computation (very basic), sequencing, choice and I/O

• Language primitives are very similar to primitives provided by CSP

1198-023A Lecture 19

SPIN

• SPIN is a tool for automatically validating Promela
specifications

• SPIN : Simple Promela INterpreter

• Has a large amount of theory behind it that we won’t
go into

1298-023A Lecture 19

Example
#define NUMCHANS 6
#define NUMSLAVES 5
#define SAMPLEDCHAN 5

mtype = {SAMPLE, SAMPLED};
chan netseg[NUMCHANS] = [0] of {mtype};

proctype slave(byte my_id)
{

byte got_sample;

got_sample = 0;

do
:: netseg[my_id]?SAMPLE -> got_sample = 1;

:: got_sample -> netseg[SAMPLEDCHAN]!SAMPLED;
 got_sample = 0;

od
}

proctype master()
{
...

}

init
{

run slave(0); run slave(1);
run slave(2); run slave(3);
run slave(4); run master();

}

1398-023A Lecture 19

Using SPIN

• Perform random simulation of behavioral model

• SPIN can perform random or guided simulation of the behavioral model, with
random interleavings of the different concurrent behaviors in model

• Verify properties specified in Linear Temporal Logic (LTL)

• Properties and invariants can be specified as LTL formulae

• Scenarios where these properties can be violated will be caught and example
activations shown

1498-023A Lecture 19

Message
Sequence
Chart

master:6

1!SAMPLE

slave:1

1?SAMPLE

1!SAMPLE

2!SAMPLEslave:2

2?SAMPLE

2!SAMPLE

3!SAMPLEslave:3

3?SAMPLE

3!SAMPLE

4!SAMPLEslave:4

4?SAMPLE

4!SAMPLE

5!SAMPLEslave:5

5?SAMPLE

5!SAMPLE

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

1!SAMPLE1?SAMPLE
1!SAMPLE

2!SAMPLE2?SAMPLE
2!SAMPLE

3!SAMPLE3?SAMPLE
3!SAMPLE

4!SAMPLE4?SAMPLE
4!SAMPLE

5!SAMPLE5?SAMPLE
5!SAMPLE

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

1!SAMPLE1?SAMPLE
1!SAMPLE

2!SAMPLE2?SAMPLE
2!SAMPLE

3!SAMPLE3?SAMPLE
3!SAMPLE

4!SAMPLE4?SAMPLE
4!SAMPLE

5!SAMPLE5?SAMPLE
5!SAMPLE

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

1!SAMPLE1?SAMPLE
1!SAMPLE

2!SAMPLE2?SAMPLE
2!SAMPLE

3!SAMPLE3?SAMPLE
3!SAMPLE

4!SAMPLE4?SAMPLE
4!SAMPLE

5!SAMPLE5?SAMPLE
5!SAMPLE

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

6!SAMPLED 6?SAMPLED
6!SAMPLED

1!SAMPLE1?SAMPLE
1!SAMPLE

2!SAMPLE2?SAMPLE
2!SAMPLE

3!SAMPLE3?SAMPLE
3!SAMPLE

4!SAMPLE4?SAMPLE
4!SAMPLE

5!SAMPLE5?SAMPLE
5!SAMPLE

<waiting>

<waiting>

<waiting>

<waiting>

<waiting>

<waiting>

:init::0

<waiting>

1598-023A Lecture 19

SPIN Demo

• You can do everything from the command line

• Xspin is a graphical front end to spin

1698-023A Lecture 19

Handouts

• “Communicating Sequential Processes”; C.A.R. Hoare,
Communications of the ACM, Volume 21, Number 8, 1978

• “Using SPIN”; Gerard J. Holzmann, Plan 9 Documents, Volume 2, available on
the web at http://plan9.bell-labs.com/sys/doc/index.html

1798-023A Lecture 19

Next

• Next lecture: More depth on Promela and SPIN (ABP
protocol example)

• Next week: Inferno’s security architecture

1898-023A Lecture 19

Fin.

