
98-023A Lecture 17

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

98-023A Lecture 17 2

• Communicating Sequential Processes (CSP)
• Overview of the 1978 paper by C.A.R. Hoare

Lecture Outline

98-023A Lecture 17 3

Syllabus
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS

• Week 7: C applications as resource servers: Built-in modules and device drivers

• Week 8: Case study I — building a distributed multi-processor simulator

• Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 10: Programing with threads, CSP

• Week 11: Debugging concurrent programs; Promela and SPIN

• Week 12: Factotum, Secstore and Inferno’s security architecture

• Week 13: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

98-023A Lecture 17 4

Background

• Charles Antony Richard Hoare

• Quicksort sorting algorithm (1961)

• Elliot Algol compiler

• Hoare Logic, Axiomatic Semantics

• Knighted by the Queen (so he has his own coat of arms ?)

98-023A Lecture 17 5

Program Structures

• Programs compute, interact with real world via I/O

• Primitive program structures capture computation
• Repetition

• Choice

• Sequencing

• I/O has generally been ‘tacked on’

• Programs execute on hardware, hardware inherently
concurrent
• Even more true when dealing with multiprocessors (which were looking really

promising in 1978)

98-023A Lecture 17 6

Background: Hardware

• Hardware used to be very expensive

• Rather than implement solution with lots of hardware,
reuse blocks of hardware in time
• Blocks implemented specific tasks or “instructions” which are used over and over
• Timing of this hardware reuse (in time) usually driven by a clock
• Hence ISA and clock driven computation as we know it today

• Benefits of multiprocessors and spatial computation
• Performance (If your workload has parallelism)
• Fault-tolerance (Still run though individual processor may fail)
• Parallel computation can be more energy efficient [A. Martin et al., 2001]

98-023A Lecture 17 7

Communicating Sequential
Processes

• Previously, communicating components in a multiprocessor
used primitives such as
• Communicate through shared variables : requires synchronization as a separate action

• CSP: Single solution to both communication and
synchronization
• Guards
• Parallel composition
• Synchronous (i.e., blocking, unbuffered) I/O on ‘Channels’
• Pattern matching

• Context (1978)
• Dijkstra’s guarded commands
• Doug McIllroy (irked Ken to implement pipes) : coroutines
• Algol 60, Pascal

98-023A Lecture 17 8

Commands

• Notion of command success and failure

• Null commands
• Do nothing: skip

• Simple Commands
x := 5
a : integer; Time?a
console!’c’

• Structured Commands
a : integer; *[a := 0; Time?a -> skip;]

• Command Lists
• n, d, pi: integer; n := 22; d:= 7; pi := n/d;

98-023A Lecture 17 9

Processes and Parallel
Composition

• Process is the basic unit of concurrency
• It is essentially a named command list that can be composed with others

• Process Label
• This is the process name
• Used to specify parallel composition of processes
• Used in communication
• e.g., SLAVE :: SLAVEcode
• Where SLAVEcode is [MASTER(0)?c; MASTER(i)!sample]

• Parallel Composition
[SLAVE(1..5)::SLAVEcode || MASTER :: MASTERcode]

98-023A Lecture 17 10

Channels

• Channels per se don’t exist
• Communication is on process name (process label)
• May be subscripted to denote separate channels in process

• Channels are both for communication and synchronization
• Input and output are synchronous (you can implement buffering in a process)
• Each send must be matched by a receive to succeed and vice versa
• Structured value with no type (called a “signal”) can be passed on channel

• Receive from process (input)
• PROCESSname?target variable
• e.g., console(42)?key

• Send to process (output)
PROCESSname!expression
console(42)!ack

98-023A Lecture 17 11

Alternation and Repetitive
Commands

• Repetition
• *<alternative command>
• Repeat <alternative command> until it fails
• Alternative command made up of guarded command. Fails when all guards fail

• Alternation
• pick (fairly) one constituent guarded command whose guard succeed
• Syntax: GUARD1 → COMMAND1☐GUARD2→ COMMAND2 ...☐GUARDn→ COMMANDn

• Example

98-023A Lecture 17 12

Structure Matching

• Pattern matching on the structure of terms
• Assignment commands fail if the LHS and RHS don’t have the same structure

• x := x+1 (will not fail)

• c := P() (c must have same structure as constructor P, else command fails)

• P() := c (c must have the value P(), otherwise this command fails)

• CONSTRUCTOR1(n) := CONSTRUCTOR2(n) (will fail because LHS and
RHS have different structure, since they have different constructors)

• Communication (?, !) will fail if structure does not
match

98-023A Lecture 17 13

Implementing Coroutines,
Subroutines and Monitors

• Coroutines
• Rather than a caller-callee organization, both routines run simultaneously with

control passing between them

• Subroutines (functions)
• Implemented in CSP as communication
• Send arguments to process (via its label)
• Receive results from process (via its label)
• (Each process assumed to be servicing only one user)

• Monitors
• Process serving several users
• Users connect via distinct channels (process label subscripts) or must have

distinct names known to monitor

98-023A Lecture 17 14

Examples

• Coroutines: Squash

• Subroutines: Integer division w/ remainder

• Monitors: Bounded buffer

98-023A Lecture 17 15

End Notes (things to think about)

• CSP was not meant to be a “complete” programming
language
• Paper is about an idea, CSP

• Some issues
• Programming in-the-large : how to connect to processes if you do not know

names a priori

• Bounds on processes
• CSP : bounded number of processes (as defined statically in program source)

• Dynamic creation of processes absent

• Should the system be the only endpoint for controlling processes ?

98-023A Lecture 17 16

Fin.

