98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

Phillip Stanley-Marbell

pstanley@ece.cmu.edu

98-023A Lecture ||

Lecture Outline

e C applications as Inferno Resource Servers

e Styx Servers vs Builtin-Modules and Device Drivers :
Tradeoffs

98-023A Lecture ||

No Class Next VWeek

e Week |: Introduction to Inferno

e Week 2: Overview of the Limbo programming language
e Week 3:Types in Limbo

e Week 4: Inferno Kernel Overview

e Week 5: Inferno Kernel Device Drivers

e Weelk 6: NO CLASS

e Week 7: C applications as resource servers: Built-in modules, device drivers, external
Styx servers

e Week 8: Case study | — building a distributed multi-processor simulator
e Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

e Week |0: Programing with threads, CSP

e Week | |: Debugging concurrent programs; Promela and SPIN

e Week |2: Factotum, Secstore and Inferno’s security architecture

e Week |3: Case study Il — Edisong, a distributed audio synthesis and sequencing engine

98-023A Lecture || ‘ 3

Combining C code w/
Limbo

* Reasons for integrating C code w/ Limbo applications

e You already have a substantial application / algorithm implemented in C, and you
don’t want to re-implement it in Limbo

e You need to integrate a performance-critical facility

e Note: Should only consider integrating C code when the facility is going to be
used often

* Implementation options

|. Built-in modules
2. Device Drivers

* Extant examples: Sys, Draw, Math, Tk, Prefab, Keyring

e |Implemented as built-in modules, to provide high performance for math
operations etc.

98-023A Lecture ||

Built-in modules

e Seen by Limbo programs as other Limbo modules
* Gain access to module as usual by doing a

* Not loaded from a Dis bytecode file (obviously)

e Loaded form the special name “$modulename”

* The built-in modules (C code) provide module
interface definitions just as though they were Limbo

modules
e Eg,/module/math.m

e Limbo modules can call functions defined in built in modules, access constants
defined in module interface, all as usual

98-023A Lecture ||

Built-in Module Example: Math

* Module interface (recall, a type) defined in

* Example use (nothing peculiar):

init(ctxt: ref Draw->Context, args : list of string)

{
math := load Math Math->PATH;

costiover?2 = math->cos(Math->Pi/2);

}

e Advantage:looks identical to a module implemented in Limbo, but when you call, e.g.,

math->cos (), the code is not running over the VM, but is a compiled C routine
running as part of the emulator / kernel

e Downsides

. (relative to device drivers)
e Built-in module is

e Bugs in your C code will crash the emulator / native kernel

98-023A Lecture ||

Implementing Built-in
Modules

* Limbo compiler provides some help

e Steps:

. Following examples will use /module/math.m and will
step through process of re-implementing the Math built-in module

. This will define

functions which system will expect to exist at runtime, based on module
interface

98-023A Lecture ||

Abridged

Math: module

{
PATH: con "$Math";
sinh: fn(x: real): real;:
sort: fn(x: array of real, pi: array of 1int);
sqrt: fn(x: real): real;
tan: fn(x: real): real;
tanh: fn(x: real): real;
y0: fn(x: real): real;
yl: fn(x: real): real;
yn: fn(n: int, x: real): real;
import_int: fn(b: array of byte, x: array of int);
import_real32: fn(b: array of byte, x: array of real);
import_real: fn(b: array of byte, x: array of real);
export_int: fn(b: array of byte, x: array of int);
export_real32: fn(b: array of byte, x: array of real);
export_real: fn(b: array of byte, x: array of real);
s

e As usual for a Limbo module interface, defines module
functions, constants and data structures/types

98-023A Lecture ||

Generating C
Implementation Stubs

e Steps
e Generate C stubs with
e limbo -T Modulename
e eg,l1mbo -T Math math.m > mathmod.c

e Generate structure definitions and function prototypes needed by above C stub
e limbo -a
e eg,limbo -a math.m > math.h

e Generate Linkage Table which contains function signatures for built-in functions
e eg,limbo -t Math math. > mathmod.h

98-023A Lecture ||

Generated files...

98-023A Lecture ||

So how do they get
linked in / initialized !

* Once again, the emu/kernel config file

mod
SYS
draw
tk
math
Srv Srv
keyring
loader
freetype

* The generated emu.c (analogously for kernel) will contain calls
to sys , draw etc, based above entries

* Actual module implementation usually linked into

98-023A Lecture ||

Should you go Built-in ?

* The answer is usually NO.

* Device drivers provide same performance advantage,
and resources can be made visible over network

* You can also implement a Styx server outside the

emulator / kernel
e This is often the way to go

98-023A Lecture ||

Project

* Email me a semi-formal description of what you want
to do for the final project

* Format
e | -2 pages, describing:
|. Motivation (why you want to do it)
2. Approach (How you think you're going to implement it)
3. Goal / Delivery (What you will be able to show when you’re done)

4. Timeline (when you’re going to finish what parts)

3. Due Next Monday (will count as mini-project grade)

98-023A Lecture ||

Next

e Standalone Styx servers

L.

98-023A Lecture ||

