
98-023A Lecture 11

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 11

• C applications as Inferno Resource Servers

• Styx Servers vs Builtin-Modules and Device Drivers :
Tradeoffs

Lecture Outline

398-023A Lecture 11

No Class Next Week
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS

• Week 7: C applications as resource servers: Built-in modules, device drivers, external
Styx servers

• Week 8: Case study I — building a distributed multi-processor simulator

• Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 10: Programing with threads, CSP

• Week 11: Debugging concurrent programs; Promela and SPIN

• Week 12: Factotum, Secstore and Inferno’s security architecture

• Week 13: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

498-023A Lecture 11

Combining C code w/
Limbo

• Reasons for integrating C code w/ Limbo applications
• You already have a substantial application / algorithm implemented in C, and you

don’t want to re-implement it in Limbo

• You need to integrate a performance-critical facility

• Note: Should only consider integrating C code when the facility is going to be
used often

• Implementation options
1. Built-in modules
2. Device Drivers
3. External Styx Servers

• Extant examples: Sys, Draw, Math, Tk, Prefab, Keyring
• Implemented as built-in modules, to provide high performance for math

operations etc.

598-023A Lecture 11

Built-in modules

• Seen by Limbo programs as other Limbo modules
• Gain access to module as usual by doing a load

• Not loaded from a Dis bytecode file (obviously)
• Loaded form the special name “$modulename”

• The built-in modules (C code) provide module
interface definitions just as though they were Limbo
modules
• E.g., /module/math.m

• Limbo modules can call functions defined in built in modules, access constants
defined in module interface, all as usual

698-023A Lecture 11

Built-in Module Example: Math

• Module interface (recall, a type) defined in /module/math.m

• Example use (nothing peculiar):
init(ctxt: ref Draw->Context, args : list of string)
{

math := load Math Math->PATH;
cosπover2 = math->cos(Math->Pi/2);
...

}

• Advantage: looks identical to a module implemented in Limbo, but when you call, e.g.,
math->cos(), the code is not running over the VM, but is a compiled C routine
running as part of the emulator / kernel

• Downsides
• Facilities are easily accessed by other hosts over network (relative to device drivers)
• Built-in module is linked directly into emulator / native kernel
• Bugs in your C code will crash the emulator / native kernel

798-023A Lecture 11

Implementing Built-in
Modules

• Limbo compiler provides some help

• Steps:

1. Define module interface. Following examples will use /module/math.m and will
step through process of re-implementing the Math built-in module

2. Use Limbo compiler to generate a skeletal C implementation. This will define
functions which system will expect to exist at runtime, based on module
interface

3. Flesh out skeletal C implementation

898-023A Lecture 11

Abridged math.m

• As usual for a Limbo module interface, defines module
functions, constants and data structures/types

Math: module
{
 PATH: con "$Math";

 ...

 sinh: fn(x: real): real;
 sort: fn(x: array of real, pi: array of int);
 sqrt: fn(x: real): real;
 tan: fn(x: real): real;
 tanh: fn(x: real): real;
 y0: fn(x: real): real;
 y1: fn(x: real): real;
 yn: fn(n: int, x: real): real;

 import_int: fn(b: array of byte, x: array of int);
 import_real32: fn(b: array of byte, x: array of real);
 import_real: fn(b: array of byte, x: array of real);
 export_int: fn(b: array of byte, x: array of int);
 export_real32: fn(b: array of byte, x: array of real);
 export_real: fn(b: array of byte, x: array of real);
};

998-023A Lecture 11

Generating C
Implementation Stubs

• Steps
• Generate C stubs with

• limbo -T Modulename file_containing_module_interface_defn
• e.g., limbo -T Math math.m > mathmod.c

• Generate structure definitions and function prototypes needed by above C stub
• limbo -a file_containing_module_interface_defn
• e.g., limbo -a math.m > math.h

• Generate Linkage Table which contains function signatures for built-in functions
• e.g., limbo -t Math math. > mathmod.h

1098-023A Lecture 11

Generated files...

1198-023A Lecture 11

So how do they get
linked in / initialized ?
• Once again, the emu/kernel config file

• The generated emu.c (analogously for kernel) will contain calls
to sysmodinit(), drawmodinit() etc, based above entries

• Actual module implementation usually linked into libinterp

mod
 sys
 draw
 tk
 math
 srv srv
 keyring
 loader
 freetype

1298-023A Lecture 11

Should you go Built-in ?

• The answer is usually NO.

• Device drivers provide same performance advantage,
and resources can be made visible over network

• You can also implement a Styx server outside the
emulator / kernel
• This is often the way to go

1398-023A Lecture 11

Project

• Email me a semi-formal description of what you want
to do for the final project

• Format

• 1 - 2 pages, describing:

1. Motivation (why you want to do it)

2. Approach (How you think you’re going to implement it)

3. Goal / Delivery (What you will be able to show when you’re done)

4. Timeline (when you’re going to finish what parts)

3. Due Next Monday (will count as mini-project grade)

1498-023A Lecture 11

Next

• Standalone Styx servers

Fin.

