
98-023A Lecture 10

Phillip Stanley-Marbell
pstanley@ece.cmu.edu

98-023A : Concurrent and
Distributed Programming

w/ Inferno and Limbo

298-023A Lecture 10

• Native Kernel Initialization

Lecture Outline

398-023A Lecture 10

No Class Next Week
• Week 1: Introduction to Inferno

• Week 2: Overview of the Limbo programming language

• Week 3: Types in Limbo

• Week 4: Inferno Kernel Overview

• Week 5: Inferno Kernel Device Drivers

• Week 6: NO CLASS

• Week 7: C applications as resource servers: Built-in modules and device drivers

• Week 8: Case study I — building a distributed multi-processor simulator

• Week 9: Platform independent Interfaces: Limbo GUIs; Project Update

• Week 10: Programing with threads, CSP

• Week 11: Debugging concurrent programs; Promela and SPIN

• Week 12: Factotum, Secstore and Inferno’s security architecture

• Week 13: Case study II — Edisong, a distributed audio synthesis and sequencing engine

Spring Break

498-023A Lecture 10

Kernel Init and Startup :
l.s

• First entry point is /os/systemarch/l.s

• l.$O must be the first item in OBJ list in mkfile

• l.s sets up some machine state, e.g. ensure CPU is in
supervisor mode

• l.s calls kernel C startup code, main() in main.c

• Several more details in the case of x86 (e.g., the Plan 9
boot loader 9load sets up the MMU, real/vs protected
mode dance, etc.)

598-023A Lecture 10

Kernel Init and Startup :
main.c

• Initial cleanup
• e.g., Zero out uninitialized memory segment
• Setup cache configuration

• machinit()
• archreset()
• confinit()
• links()
• xinit()
• poolinit(), poolsizeinit()
• trapinit(), clockinit()
• procinit()
• chandevreset()
• userinit()
• schedinit() (Initialization ends here: schedinit() never returns)

698-023A Lecture 10

machinit()
• Clears the Mach structure (remember, last lecture ?)

• Mach is defined in /os/archname/dat.h
struct Mach
{

ulong ticks;

/* of the clock since boot time */
Proc *proc;

/* current process on this processor */
Label sched;

/* scheduler wakeup */
Lock alarmlock;

/* access to alarm list */
void *alarm;

/* alarms bound to this clock */
int machno;
int nrdy;
int stack[1];

};

798-023A Lecture 10

archreset()

• In /os/archname/archXYZ.c

• System architecture specific initialization

• Might not have to do anything

• E.g., in the ks32 port

• /os/archname/archXYZ.c also contains code for
other board/architecture specific operations

898-023A Lecture 10

confinit()

• Does any
architecture
specific
initialization
• Calls archconfinit() from
/os/archname/
archXYZ.c

• Sets up the Conf
*conf structure
• Conf structure is

defined in /os/
archname/dat.h

• npage, base0, base1
setup by xinit()

struct Conf
{

ulong nmach; /* processors */
ulong nproc; /* processes */

/* total physical pages of memory */
ulong npage0;
ulong npage1;

 /* highest physical address + 1 */
ulong topofmem;

ulong npage;
ulong base0; /* base of bank 0 */
ulong base1; /* base of bank 1 */

 /* max interrupt time allocation in bytes */
ulong ialloc;

ulong flashbase;
ulong cpuspeed;
ulong pagetable;
int useminicache;
int cansetbacklight;
int cansetcontrast;
int remaplo;
int textwrite;

};

998-023A Lecture 10

links()

• This is defined in the C source generated by mkdevc,
upon parsing the kernel config file

• For all the entries in the links section, entrynamelink() is called

• For example, for the following link section in a kernel config file:
link
ether2114x pci
ps2mouse
ethermedium

• The following code is generated (in confname.c) during the mk
• void links(void){

• ether2114xlink();
• ps2mouselink();
• ethermediumlink();

• }

1098-023A Lecture 10

xinit()

• In /os/port/xalloc.c

• Sets up the base and npage variables in the Conf
structure, i.e., sets up knowledge of memory

• Low-level memory allocation routines
• xalloxz()

• xalloc()

• xfree()

1198-023A Lecture 10

poolinit(),
poolsizeinit()

• In /os/port/alloc.c

• Memory in Inferno is managed as a set of fixed size “pools”
• main

• heap

• image

• E.g., memory for on-screen images is allocated from the image pool

• poolsizeinit() is in main.c

• Uses low-level memory allocation routines previously
mentioned, from /os/port/xalloc.

1298-023A Lecture 10

trapinit()

• In /os/archname/trap.c

• Sets up exception stacks

• Installs interrupt handlers

1398-023A Lecture 10

clockinit()

• In /os/archname/clock.c

• Various routines for managing hardware timer

• Enable timer

• Disable timer

• Get number of clock ticks since CPU initialized

1498-023A Lecture 10

procinit()

• In /os/port/proc.c

• Allocates memory for process list
• nproc variable in the Conf structure

1598-023A Lecture 10

chandevreset()

• In /os/port/chan.c

• Calls the devXYZreset() routines of all device
drivers

• Recall, devtab[] array in archname.c, generated
during kernel compile by mkdevlist
• devtab[] contains pointers to a Dev structure for each device driver

• Recall that Dev structure for each device driver contains pointers to functions
for initialization, and for handling local procedure call versions to Styx protocol

1698-023A Lecture 10

userinit()

• In main.c

• Creates the first system process, init0(), running as
the user “eve”

• Marks this process as ready/runnable

• init0() calls chandevinit()

• init0() makes the Dis VM run the compiled Limbo
program osinit.dis

1798-023A Lecture 10

chandevinit()

• In /os/port/chan.c

• Calls the devXYZinit() routines of all device
drivers (recall, we previously called their reset()s)

• Recall, devtab[] array in archname.c, generated
during kernel compile by mkdevlist
• devtab[] contains pointers to a Dev structure for each device driver

1898-023A Lecture 10

schedinit()

• In /os/port/proc.c

• This is the entry point for the scheduler

• schedinit() calls sched()

• Henceforth, processes run as scheduled by kernels
scheduler (obviously)

1998-023A Lecture 10

Next

• C applications as Inferno resource servers : Built-in
modules and device drivers

• No class next week (Feb 16, Feb 18)

• Homework 2 not due until Feb 23 Fin.

